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SUMMARY 

The study is a part  of  an effort being directed  toward  solving  the 
problem of a composite material  subjected  to general  oblique loading. 

t 

This analysis was conducted  in order  to find  the  internal micro- 
mechanics of a fiber-reinforced composite due   to  transverse normal  loading. 
Special emphasis has been given to studying the  stress distribution near 
free   surfaces,  which  led   to  solvrng a three-dimensional  elasticity problem. 
The  numerical method  of  finite elements has been employed  in this analysis. 
On  the other hand,   it was necessary to study  the behavior  far from free 
surfaces.    For  this purpose,   a  two-dimensional  program was used.     Findings 
from these  two approaches were  anticipated,   showing  that   stress conditions 
become  two dimensional  a relatively short distance  from  the end of  the 
composite.    Extensive parametric   studies have been performed from the 
combined outputs of   these  two schemes.     Significant diagrams exhibiting 
elastic properties  of different  composite materials have been obtained. 
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INTRODUCTION 

Only  in  the   ideal  case  is   the   loading of a  reinforced  composite  mate- 
rial   in  the  directions of  the  reinforcements.     Normally,   oblique   loading 
is encountered  by   the  composite.     To obtain   the  effect of oblique   loading, 
we must  combine  axial,   shear,   and  transverse   loadings.     By doing so,   we 
can establish   the  stresses  in  the reinforcements and  in  the matrix as   they 
actually occur;   we   can  then use  these  stresses  for  the development  of  a 
strength  theory based on such reliable  data. 

This report presents the case of transverse  loading of a uni- 
directional   composite.    The  two different  regions  considered are   (1)   the 
region close   to  the end of  the  fibers, where  three-dimensional   treatment 
is applied,   and   (2)   regions   far   from the  end of  the  fibers, where  the  end 
perturbations  are  not more effective    and  where  a  plane  solution  is 
applied. 

In  both  cases,   the  finite element method was applied  successfully. 
For  the  plane   problem,   we also  intended  to  find a solution by using  the 
so-called  point-matching or collocation method which was applied   In 
the  solution  of   the   longitudinal   shear  problem.       However,   the  convergence 
of  this method was   very poor  for  this  case  of  transverse  loading. 
Appendix I  gives   the  equations  utilized,   along with a description of  the 
form  in which   the   point-matching method  was   used. 

The  plane  problem was solved  in both  plane  stress and plane  strain 
conditions  by using  the  finite elemert method.     Displacements,   stresses, 
and  transverse   moduli    for different  types   of  composites  are given  in 
this  report. 

MMMH 



THREE-DIMENSIONAL SOLUTION 

The numerical approach used to evaluate a specified three-dimensional 
boundary problem of linear elasticity represents a first-order approxima- 
tion method. This method is known as the method of finite elements.  Its 
concept is based on the assumption that the stress within small-volume 
elements of the body is constant. This is precisely true if we consider 
infinitesimal volume elements.  For small-volume elements, this assumption 
of constant stress proves to be a good model representation of reality. 

It is convenient to consider small tetrahedrons as volume elements 
because three-dimensional space can be subdivided into sets of tetra- 
hedrons in a simple way.  The assumption of constant stress within each 
elementary tetrahedron is equivalent to the assumption of linear 
displacement-vector-distibution within the elementary tetrahedron. 

Compatibility and equilibrium conditions introduced at the tetra- 
hedron node points lead to a system of linear algebraic equations whose 
solutions represent displacements at the node points of the tetrahedrons. 
From these displacements, we can determine the stresses within each 
tetrahedron. 

THE STIFFNESS MATRIX OF A TETRAHEDRON ELEMENT 

In order to obtain the proper working equations, we have to consider 
an elementary tetrahedron first and find the pertinent relations as far 
as stress, nodal forces, ard nodal displacements are concerned. 

Figure 1 shows a general elementary tetrahedron with the nodes N. 
N3 , and N* .  We assume that the three coordinates  ^ 

^i (i - 1,2,3,4)  are known for each node point Ni (i 
l   .   Mi 

1.2,3,4)   , 
and 

3(i) 

2(y) 

loo      rco 

Figure  1.     The Elementary Tetrahedron. 



Again,   we   can  represent:   the   displacement   vector   by a   linear   vector 
function  of   the   local   coordinates     ?   ,   T]   ,   and  £   .     The  origin  of   the 
local   coordinate   system coincides  with  node  N;   .     In  this   fashion,   we 
put   the   three   displacement  components   at   point    P(?>T1,C)   ,   as   follows; 

ux    "     ai   +   aa   ? +  aa   Tl +  a4   £ 

a5  +   a6   5 +   a7   Tl +   ae  ^ 

u
z    =     ^   ■'■  aio? +   anTl +  aiaC 

(1) 

(2) 

(3) 

The coefficients a1,...,a12 are constants and subject to variance with 
the geometric configuration of the tetrahedron as well as the displace- 
ment configuration at the nodes.  Let  ux. , Uy. , and  uz. (i » 1,2,3,4) 

represent displacement components of the four node points.  Then,we obtain 
the following 12 relations from equations  (I), (2), and (3): 

ai   +   as   ^   +   33   Tli   +   a4   Cl 

"*    $2   +    a3    "Hs   +    a4    C =     a,   +   a 

^3 

Yl 

Vs 

ys 

y4 

f'l     +   aS    ^3   + 33    TI3   + a4    ^3 

aj   + aa   §4 + a4  ^ + a4   C4 

ae+ae^i   + ^^i   + aeCi 

a5  +   ae 5a  + ^  "Ha + as   Ca 

a
5  

+   a6   §3  + ^   ^  + a8  C3 

ag  +   a8   ?4  + a,  Tl4  + %   C4 

a9 +   «loSi   + «u^   + ^a^i 

a9 +  aio5a + ^i\ + ^a^a 

%  +  aio&s  + aii1^ + a^Cs 

39 + aio^ + axl\ + 3^^ 

I- 

(4) 



In matrix   form,   relations   (4)   can  be  expressed  as   follows: 

(u 

xi 

x3 

^4 

u7 

1     00000000000 

1    F2  Tl8  Ca   0    0    0    0    0    0    0    0 

1    ?: 00000000 

i  54 \ j4 o  o  o   o   o   o   o   o 
OOOOloOüOOOO 

o   o   o   o   i  58 TI8 ca 0   0   0   0 

0    0    0    0    1   53 Tja  ^3   0    0    0    ü 

0     0    0     0     1    ^   Tl,   ^4    0     0     0     G 

0     00     0    00001     000 

0     0    0    0    0    0    0    0    1    53  Tls  Ja 

0    00000001   53 TI3C3 

00000000154^^ 
_J V. 

a7 

■Je 

39 

aio 
aii 

a18 

> ^ 

Equation   (5)   can  be  written  symbolically,   such   as 

ju(    -     1A)   ja| (b) 

where     {u}    are   the   12   displacements  at   the   four   nodes,    {a}    the   {l2   x   l} 
matri." of  the  configuration coefficients    a   ,...,a     .and     [A]  the   (12  x  12} 
matrix as demonstrated   in equation  (5). 

The  six strain components    ex  ,   Sy  , 
obtained   immediately   from equations   (1), 

6z   »   exy   1   6XZ   ,   and  ty.z 

(2),   and   (3),   as  follows: 
are 

xx 

^u 
 \ 
3? 

yy 

zz 

xy 

7\\i 

öu  z 

öu 

an + a? 

a. 

aia 

all 

-       33+36 



xz 

yz 

du        du 
x z 

du        du 

-    a4 + a1( 

aa +  a 11 (7) 

We denote     (e}    as  the     {6  X l)    matrix with  the elements     ex   ,   fiy  ,   62   , 

•xy 
exz • and syz and write equation (7) syubolically, as follows: 

r 
"xx 

eyy 
€zz 

e::y 

"•xz 

eyz 

0 1 Ü 0 0 0 0 0 0 c 0 0 

0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 1 0 0 1 0 

a? 

ae 

a« 

a 10 

hi 

ha 

(8) 

If we use the short form symbol  (D)  for the (6 X 12)  matrix in equa- 
tion (8), we can write equation (8) in the symbolic short form: 

j.j - [»][.( (9) 

Finally,   we  can obtain the  six  stress   tensor components    a     ,  av  , 
axy  » CTXZ  , ayz    from Hooke's  law: 

'z   » 

ay 

'xy 
>    " 

wxz 

\CTyz / 

X+2G \ X 0 0 0 

\ X+2G X 0 0 0 

X X X+2G 0 0 0 

0 0 0 G 0 0 

0 0 0 0 G 0 

0 0 0 0 0 G 

€, 
)       (10) 

*xy 
exz 

J        \ eyz; 



with the meanings of  X  and G , 

E 

and 

2(1+V) (11) 

(l+v)(l-2v) (12) 

where    E    is  the modulus of elasticity and    v    is  Poisson's ratio. 

The  symbol     [C]     stands  for  the     [6  X 6}    matrix of equation   (10), 
which  is  the  elasticity matrix.    Equation   (10)   therefore  is,   in short 
symbolic  form, 

H - [c] H a3) 

Substitution of     {e]    by means of equation  (9)   follows: 

| a)   -    [C][D] jaj (14) 

From equation   (6),   we  can express     {a}     in  terms  of 

jaj    -    [A]'1   ju( (15) 

where    [AJ represents   the  inverse matrix of LAJ ,    Therefore,   equati 
(14)   is 

on 

jaj   -    [CMA]"
1
   juj (16) 

Expression (16) is the working equation for calculating the stress 
tensor  {o} .  In order to do this, it is necessary to tnow all 12 dis- 
placement components at the 4 nodes.  In general, whether or not each one 
of them is given input quantities depends on the kind of boundary condi- 
tions present.  As a matter of fact, we are in general not free to choose 
a displacement component arbitrarily when the corresponding force compo- 
nent has been fixed.  Castigliano's theorem expresses this proposition 
clearly, stating that in any linear elastic system, the force component 
acting on the system in a certain direction is equal to the first deriva- 
tive of the strain energy function with respect to the displacement in 
the same direction.  If we define W as the strain energy function of 
the system, we can obtain a set of equations which relates the node 
force component array to the displacement components, as follows: 



(17) 

W proves to be a quadratic form in fu}, and therefore It is the right-hand 
side of a linear function in [u] representing the desired relationship 
between forces and displacements.  Next, we have to obtain the strain 
energy function W . 

The strain energy of an elastic body is the volume integral over the 
elastic potential, such as 

" - i JK e+ae+ae+a    e     + a    e     +<j    e    ^dV      (18) x y  y z  z xy xy xz  xz yz yz J ' 

The integrand can be written symbolically [e}  {a} , and since e and 9 
are constant within the region of integration, we get 

where 

w - iHTHvJdV - iHTWv 
(19) 

xa-xi Ya-Yi za-zi 

^a-^i ya-Xi z3-zi 

X4-X1     Yi-Yi     z^-zi 

1 
6 

s3  \ Ca 

S3    Tb Ca 

5*   TU U 

(20) 

is   the  volume of our elementary tetrahedron.     Keeping  in mind  that  the 
volume  must be  positive   regardless of  the  selected  sequence of the node 
points,   the absolute  value  of  the   triple product   in equation   (20)   is 
indicated. 

Relation  (19)   is  the  dp^lred  function, and all   that  is   left is  the 
substitution of  the  proper   linear expressions  in  terms  of     {u}  ;  namely, 
expressions   (16)  and   (9)   in conjunction with   (15).     Substitution of    {a} 
by   (19)   issues  the modified equation   (9). 

jcj    -    [D][A]-)aj (21) 

The  transposed  linear matrix     {e}       follows  after  applying the  transposi- 
tion rule   twice,   as   follows! 



jejT    =      {[D][A]-   juS}T    =     {[A]-   juj}T[D]' 

(22) 

With equations   (22)   and   (16),   the   strain energy  function    W    can be 
written  in  the  following quadratic   form: 

W    -    |v)ujT([Ar)T   [D]T[c][D][Ar   juj (23) 

Equation (23) leads to the desired force displacement relationship through 
the second Castigliano theorem (17). Applying the differentiation rules 
yields 

H   =   KM") TWT[c][n][A]-jui 

^^'(W"1)   TmT[c][D][A]- (24) 

Repeated  application of the  transposition rule   and observation  that 
[C]    =   (C]   (the elastic matrix  is  a  symmetric  one)  shows  that  the  last 
right-hand  term is equal  to  the  first   term.    We,therefore, get  the  system 
of  linear equations 

JP(    -     v([Ar)T[D]T[c][D][Arjuj (25) 

which  contains the  set of working equations  to obtain the  unknown displace- 
ments  for  computing  the stress   tensor  according  to equation  (16) .     We  call 

[K]    =    v([Ar)   T[D]T    [C][D][A]^ (26) 

the stiffness matrix. The stiffness matrix [K]  is a symmetric one since 
the matrix of elastic constants [C]  Is symmetric, as pointed out above. 
The matrix [A]~   depends only on the local coordinates of the tetra- 
hedron nodes. Matrix (26) therefore depends only on the local coordinates 
of the tetrahedron nodes and the elastic constants of the elastic medium 
within the tetrahedron. 

The physical significance of each K-matrlx element can be demonstrated 
by considering special load conditions at the nodes of the tetrahedron. 



Let us assume that we want to interpret the meaning of Che ij th 

element of the K-matrix on the element in the i1-" row and j1-" column.     If 
we  set,  in equation  (25),  all displacement components but the j*-" one equal 
to zero and the j      displacement component equal to one  (single displacement 
condition),  then  the  12 force components become equal  to the 12 coeff-  ients 
in the j'" column.    The value of the coefficients in the it" row and j'-" 
column is therefore  the ith force component which must be present  to maintain 
all displacement components at zero except  the j*-" displacement component, 
which must be kept at unity.     In general,  we must apply 12 force components 
to maintain this special  strain condition of  the tetrahedron in correspond- 
ing with the 12 coefficients in the j1-" column. 

The j1-11  force   in  particular acts  in  the  same  direction as the  j^h 
unity displacement.     Sine     the   force  is  doing  work  on  the  sysiem,   the 
orientation  of  force   and   lisplacement:   in   the   j th  direction must  corre- 
spond.  This means   that  all   diagonal elements  of   the  K-matrix must be 
positive. 

In many cases, it is the single unity displacement condition that 
helps us to visualize intuitively the physical significance of certain 
matrix elements. 

THE  COMPOUND STIFFNESS  MATRIX OF A LATTICE 
FORMED BY A SYSTEM OF TETRAHEDRONS 

Any space  region  can be   subdivided  into  systems  of   parallelepipeds 
and  each parallelepiped  into  six tetrahedrons.     In  this way,   the space 
region can be  built  up  by a  system of  tetrahedrons   in the   same way that  a 
two-dimensional region can be  covered by a  net of  triangles. 

If we  consider  an   interior  tetrahedron —  that  is,   one  completely 
surrounded by four  other   tetrahedrons  and  whose   node   points  are not 
boundary points of  the  space  regions — then it  can be  shown that each 
node  point must  be  common with node points  of  17 or 23 other tetrahedrons 
in   the  neighborhood  of   the   tetrahedron being  considered.     This  means   that 
the   forces generated at a  lattice  point of  interior  space  are  the sum of 
all   forces generated by  the  18 or 24 tetrahedrons, each having one of  its 
node  points coinciding with  the  lattice  point being considered. 

Consequently,   we  can now see  that,   in general,   the  force at a lattice 
point will  be  affected  by  the   displacements  at  each  node  of each of  the 
18  or 24 connected  tetrahedrons.    This  is evident  since  all  proper force 
equations  from each  of  the  18 or 24 contributing tetrahedrons must be 
summed  together  in order  to get  the resultant  force  at  the  lattice point. 
In  this ;i iner,  we get,   in general,  a linear relationship between the 
compoundc     force a^-   ehe   lattice  point and all  pertinent displacement 
componeni. • ..^earing  in all  the  18 or 24 tetrahedrons concerted at the 
lattice point. 
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Let  us   suppose   that   ehe   i       lattice   point   is   connected   to     p     tetra- 
hadror .  having   the   numerical   sequence     ^ (i),t2(i),.,. , tp(i) ,    The   elements 
of   this  sequence  are   funct-ms   of   the   lattice   point,   as   indicated  by   the 
argument.     The   force  vector   at   the   it"   lattice   point   is   represented  by  its 
three   components 

>(i) 

3 

,(i) 

(27) 

The stiffness matrix of the tetrahedron  t  shall be expressed by 

[K
(,:)

] (28) 

and the line elements of this matrix belonging to the fqree components 

1,2,3 at the lattice point  i  are 

[K^' i)T 

l^' 0] 

U1' if 
(29) 

The   compound   force   at  the   i       lattice   point   is   therefore 

p(i) 

P(i) L 
J-1 [[^«"'^ 

{^} (30) 

where   (u  J f   is the column nodal displacement vector corresponding to 
the  t.  tetrahedron. 

The'total matrix that is obtained in this fashion for all N  lattice 
points is denoted by  [K*] , which is 

j=i 

jytjd),!)] 
[KfjU),!)- 
[^(tjd)^) 

(31) 

where  i = 1,2,3,..N 
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It Is  obvious that  th? configuration of  tetrahedrons connected to a 
lattice point    1    will be different when    1     Is a boundary point Itself. 

The column vectci    It.     >    will contain lesser elements than the corres- 

ponding matrix for  Interior  lattice points. 

We have distinguished between  the  force components belonging to a 
lattice point    1    and  in a certain direction  (1,  2,  or 3).    This  scheme has 
the advantage  of  allowing us  to know with  which element  we are dealing.     In 
order to use  one   index number   to identify a  force   (or displacerjent) component 
but  still contain  the  information of  the  lattice  number     1    and   the  type  of 
direction  (J =   1,   2,  3),  we  introduce the  Index number  scheme: 

n    =    3(i   -   1) +  j 

(i = 1,2..^ ; j = 1,2,3) .  In this way, the indices of components form 
a sequence of natural numbers, and each number still contains the informa- 
tion of being an x, y, or z component as well as the lattice index 
n mber i .  This information can be extracted easily, since 

j = mod(n,3) + 1 

where mod(n,3)  is the remainder of division,  n  divided by 3, and 

i =  [f] + 1  if mod(n,3) ^ 0 

öL t (32) 

i = [-j]      if mod(n,3) = 0 

where ~      means the largest integer contained in the quotient ■=• . 

With matrix (31), the system of force components acting upon the 
given configuration of lattice points can be expressed symbolically by 

H = O] ju*) (33) 

Since we use indexing of forces and displacements, the system of equations 
(33) can be written in analytical form, such as 

M 

^ "  S K^ u* (34) 1 =  S Ktj u* 
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where i ■ 1,2,3...M . We assume now that there i'; M , rhe total numher 
ot force components, .is well as displacement components. The matrix (K*l 
will   be  one   of    M x  M  . 

Because   of applied   forces   and displacements   Introduced   to  the   system, 
there   are   some   force  components   known   and   the   remaining   force   components 
unknowii.     The   same   Is   true   for   the   displacement   components   in  a   complemen- 
tary  sense.      If   there  are     Mj   unknown   force   components,   then   there   are 
M  -  Mj     known   force  components   and   there  will   be    M  -  M^      unknown  displace- 
ment   components  while   there   are     l\      known  displacements.     Let   us   arrange 
the  equations   04)   such   that   the   first     M^     equations   express   the  equilib- 
rium of   the   unknown   forces   and   the   rest  express   the   equilibrium  of   the 
known   forces.     In   the   same   fashion,   we   arrange   the   terms   In  each  equation 
such   that   the   first    Mj^      terms   contain  known  displacements   and   the 
remaining   terms  contain   the   unknown  displacements.     Furthermore,   we 
distinguish   by  super indexing   the  known  and  unknown  displacements and 
forces  with     (k)     and     (u)   .     Then  we   get   the   following  two  systems  of 
equations: 

p; (u) 
Ml 

S 
j-l 

ij 

(k) 
M 

j-n+1 
(u) 

iJ     J 
(35) 

where 1,2...!^   ,   and 

,00 (36) 

where     1-^   +   1,^   +  2,.^ 

The   last  equation   is  ;;   system  of   linear   equations   for   the     M  -  Mj 
unknown displacements     u>11^   ,   where      i  »  H   +   1   ,   ^   +   2,. .M   . 

With   the   solution  of  equation   (36),   the  unknown   forces  can  be   computed 
from equation   (33).     Equation   (36)   is   a   nonhomogeneous   linear   system of 
(M -  Mj)   equations: 

M "i 
(k) 

E K*. -'(u) - F(k)- z ^. •■;, (37) 

where     ioM1   +   l,M1  +  2,..M 
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In order   to apply numerical  methods  to  solve   this  system of equations, 
it   is  necessary  to   re-index the  unknowns  by  consecutive  natural   numbers. 
This   can  be  easily done  by generating a number  sequence   (MSK matrix)   that 
contains   the   indices  of   the  unknown  displacements   in a consecutive  order. 
The  arguments  oi   this   sequence  are  now consecutive,   natural  numbers  which 
are   the working  indices   for solving equations   (37).     By means  of  the    MSK 
matrix,   it   is  now  possiblo  to  identify each  solution element with  the 
original   index.     The  main purpose  of  this  scheme   is  to provide  Che capa- 
bility  to extract   the   information of  location   (lattice point  index)  and 
direction   (x,   y,   or  z)   of  the displacement   from the equation working  index. 
This capability Is required In many Instances; e.g.,  to satlafy the polar 
symmetry conditions and to select  the proper  sequence of the 12 displacement 
elements for each  tetrahedron In order  to compute the stresses.     Stress 
within a tetrahedron  is computed according to equation (16).    The stress 
distribution for the  three-dimension&l region of elastic oedlum is then 
obtained by applying certain boundary conditions. 

In  the   following,   the boundary  problem will  be  specified  and   the 
scheme  of   the  numerical  approach  described. 

DESCRIPTION OF THE  NUMERICAL SCHEME 

Definition .of   the  Boundary Problem 

The main objective  of  this  study  is   to  investigate the  effect of free 
surfaces  on  the  stress   distribution within a   fiber matrix composite   under 
loads   transverse   to   the   fiber. 

Figure 2 shows  this con- 
figuration schematically.    The 
stress distribution problem here 
is three dimensional.     From this 
figure, we can observe some 
symmetry conditions if we assume 
that the  fibers form a periodic 
network of hexagonals with one 
fiber axis intersecting at each 
apex and centroid of the hexa- 
gonals  (hexagonal A.B.C.D.E.F is 
one of them). 

Around  each   fiber  cross 
section,   there   is  a hexagonal 
such that another network of 
hexagonals   is   formed.     This 
hexagonal  is  called  the  basic 
fiber-resin element of  the 
system.     In Figure 2,   the 
hexagonal A'.B',€',0',£'^ 
is  such an element. 

Figure 2, Basic Fiber-Resin 
Element. 
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Figure 3 depicts the top view of the intersection of the fiber-resin 
element. 

We consider now an external force acting in a plane normal to line 
B'.E'  but at a distance which is a high multiple of distance  B'.E'  away 
from M .  We call this the transverse load upon one system.  Because of 
symmetry of load and configuration conditions, the displacements at points 
within the fiber axial-parallel planes going through lines Mj , Mj and 
Pj , Pg  are constant and in the direction of the external force. They 
are oriented opposite each other but are of equal magnitude.  All points 
of the plane normal to line M,?!  and containing point  Pj  must have 
displacements along the plane they generate.  The same displacement con- 
ditions exist for points in the plane parallel to the one described above 
but containing point M .  Both planes arf: planes of symmetry for the 
displacement contribution.  In this way, there is a periodic repetition of 
the displacement pattern which exists within the prism above the rectangular 
cell M,N,H f?^     in the direction of the four planes of symmetry which are 
the side planes of the prism.  Therefore, we can study this transverse load 
problem by the following boundary conditions, which are based on the new 
coordinate convention for the basic prism shown in Figure 4. 

02(x,y,o) -  0 (38) 

ax2(x,y,o) = 0 (39) 

ayz(x,y,o) - 0 (40) 

ux(±c(y,z) -  ±k (41) 

i (x +- u (x,±|,z) -  0 (42) 

aux 
-571 (x.y.O - 0 (43) 3Z 

dz (x.y.O — 0 (44) 

u (x.y.O — 0 (45) 
2 

The last three equations indicate that the condition of plane strain 
will be approached with increasing distance from the free surface z • 0. 
The distance t    can be chosen freely such that it will be more than four 
times the dimension of the diagonal of the base triangle.  This assumption 
has been based mainly on St. Venant's principle.  Our numerical results 
verify the correct selection of i,    in this respect. 

14 
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Figure 3.  Hexagonal Array of the Fibers . 

^ '• 

Figure 4.     Prismatic  Representative  Element. 
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Within the  region,   two   types  of elastic  materials  are  considered. 
The   cylindrical  bodies  have   the  modulus  of  elasticity    Ef     and Poisson's 
ratio    Vf   .    Outside  of  the  cylindrical  domains,   the  associated elastic 
constants are    E       and    vm   . 

With these  premises,   it   is   now possible   to compute   the  stresses  by 
applying  the  method  of   finite   elements.     In order   to  do   this,   it   is   first 
necessary to  subdivide   the   i »terior of   the  above-specified   three-dimensional 
region  into a  system of elementary tetrahedrons. 

The  System of Elementary Tetrahedrons 

In Figure  4,   we   refer   to   the   free-boundary plane     z ■  0    as "ground 
floor."    Furthermore,   we  define  eight equidistant  planes  parallel   to  the 
ground   floor,   and  we  call   the     n^"    plane   the "n1^   floor."    The  top  plane, 
z ■   ^  ,   is referred  to as   the  "tenth  floor."     These   10  planes  subdivide 
the   parallelepiped   into nine   1 lyers,  each having the  height    dz ■  t/9  . 

Next, we have  to subdivide each layer  into prisms with triangular 
bases,   since each prism can be  again subdivided  into three  tetrahedrons. 
The  simplest way to do this  is  to subdivide each  layer  in  the same way, 
which means that we erect a  set  of prisms on the ground  floor, each prism 
having  the height    t   .    Each  layer will  thus have  the  same  layout  of tri- 
angular bases as Che  one on the  ground  floor.     Figure 5  shows the way the 
ground floor has been subdivided into 96 triangle bases  (8 rows with 12 
triangles in each row).    Each  triangle represents a prism with the height 
of  Che  layer thickness    dz   .     The top triangle of the prism is a replica 
of  the base triangle and by Itself is the base triangle for  the next prism 
above  the second  layer.     In this  fashion,  all  prisms in each layer above  a 
base  triangle are  identical geometrically.    The base triangles are numbered 
on the ground  floor  in a consecutive manner.     Because of central  symmetry 
properties,  only 55  triangles need to be considered.    With  the same scheme, 
the  lattice points at the ground  floor are numbered consecutively in each 
row and column.     Because of central symmetry properties,   the  last point 
on the ground  floor is the  v-igin, which  is  lattice point  number 32. 
Continuation of the numbering starts with the lattice point above number  I 
In  the  same manner  as in the ground plane below.     In this way, we can 
calculate the corresponding  lattice point number    J    in  the p^" floor above 
the Ith lattice point by 

J    -    I + 32(p -  1) (46) 

As pointed out earlier,   the Indices scheme of the  force and dis- 
placement components can be  linked with the  Indexing scheme of the 
lattice  points.     Consequently,   the    q component   (q ■   1   is x-component, 
q ■   2   is y-component,   and q -   3  is z-component)  of  the  vector quantity 
has   considered  the   following   index    Q  : 

Q    -     3(J   -   1) +  9       or       Q    -     3[l +   32(p  -   1)   -   l] + q (47) 

16 
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We call  the prism above the base triangle between two consecutive 
floors  the elementary prism.    Since  a triangular  prism can be  subdivided 
into three  teirrahedrons   in several ways,   we must establish some basic 
rules.    Three   tetrahedrons   in any triangular  prism are generated  through 
intersecting the  prism by  two planes.    These   two  planes are  generated  by 
the three  lines  of diagonals  in each of  the   three  rectangles   forming  the 
mantle of  the  prism.     See Figure  6.    Furthermore,   it   is necessary  that 
one diagonal  line   intersect  the other  two diagonals.     In this way,   all 
three diagonals   form a  linked train of  lines     (train of diagonals) 
with disconnected,   or  open,   ends.    The   first  basic  rule we apply  in order 
to generate  the   tetrahedrons   is the  following:     The diagonals of coincid- 
ing  rectangles belonging  to adjacent prisms coincide. 

Figure  6.    Tetrahedron Forming a 
Triangular  Prism. 
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At this point, we distinguish each point of the triangle base as to 
the topological property of the train of diagonals with respect to the 
relative position to the triangle base proper. A lattice point of a base 
triangle at which two diagonal lines intersect each other is said to he 
of a topological a-property.  When two diagonal lines intersect at the 
lattice point, then the lattice point considered has a topological 
0-property. Finally, there is a lattice point topological  y-property 
when one diagonal goes through the lattice point under consideration 
and the other diagonal goes through the lattice point above or below 
the one under consideration. 

The first conclusion from this is that a base triangle must contain 
points of all three topological properties.  The second conclusion that 
follows from this topological consideration is that all apexes of base 
triangles having one common lattice point are of the same topological 
type. 

According to the last theorem, it is therefore appropriate to think 
in terms of topological properties of lattice points only.  If we know 
the topological property of each lattice point in a base triangle, we 
know the lattice points of the four apexes for each of the three tetra- 
hedrons above the base triangle.  With reference to Figure 6, we can 
state the following: 

Tetrahedron I. The three base apexes are the three lattice 
points of the base itself. The fourth apex is the g-point 
in the next floor (01 in Figure 6), 

Tetrahedron II.  The three base apexes are the a-point at 
the base, the 0-point above the base (6* in Figure 6), and 
the y-point above the base (y1 in Figure 6).  The fourth 
apex is the y-point in the base triangle. 

Tetrahedron III. The three base apexes are the three lattice 
points of the triangle above the base.  The fourth apex is 
the y-point in the base triangle. 

The last three properties contain the algorithm to generate the four 
lattice numbers corresponding to the four apexes of each tetrahedron.  It 
is therefore necessary to know the topological properties of each lattice 
point.  In the numerical program, the coordinates of each ground floor 
lattice point are stored as input quantities.  With the information of the 
lattice point numbers of the tetrahedron apexes, the associated point 
coordinates can be selected and the stiffness matrix  [K]  of the tetra- 
hedron can be computed according to equation (26). The sequence of four 
lattice point indices corresponding to the four apexes is computed and 
stored for each tetrahedron.  In the numerical program, it is called the 
IV matrix. This matrix is later needed to help identify the line and 
column of the [K] matrix with respect to the displacement and fcTrce 
indices (with the help of equation 47). After identification, a look-up 
routine of the index number in the MSK matrix allows generation of the 
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matrix [Kji] appearing at the left- and right-hand sides of equation (37). 
This look-up routine is a screening process that is also used to accumulate 
the proper terms of the force components. 

The objective of this study was to autogenerato the IV matrix.  This 
was accomplished in two steps.  The first was to generate the three lattice 
points for each base triangle (the nonordered sequence is the  IM(Jtl) 
matrix in the program, with J ■ 1,2,3); the second was to obtain, from the 
nonordered  sequence, the a-ß-y ordered sequence oi lattice numbers (the 
IM(J, 2)  matrix in the program, with J = 1,2,3), The algorithm for both 
steps follows from some simple topological considerations. 

The configuration of triangles in Figure 5 allows us to derive the 
sequence of node point indices as a function of triangle index.  Let 
I 5 48 be the triangle index. Then we have node 1, the lattice index. 

iMd.i) - 1 + [i]+[i^l£] (48) 

with     Ie(12)     equalling zero  if    mod(l,12)  =   1   ,   or one   if    nioci(I,12)  =  0   , 

IM(2,1)     =     IM(1,1) +(71-   (-l),I/2|j +  7 (49) 

IM(3,1)    =    IM(1,1) +   7 (50) 

The ratios in brackets indicate that the largest integer contained in the 
quotient is taken. 

For all triangles with numbers greater than 48, a mirror-image con- 
figuration exists, and the lattice indices are computed according to the 
following: 

M+N^J IM(1,1)     =    1+|TI+I ^5 I (51) 

with     Ie(l2)     equalling  zero  if    mod(I,12)  =   1   ,   or  one   if    mod(l,12)  =  0   , 

IM(2,1)     =    IM(1,1) +   7 

IMO.l)     =    IM(1,1) +  U    I   -   (1) A   . - M)11'21) +  7 

(52) 

(53) 

So far,  we  have obtained   the nonordered   sequence of  lattice  point 
indices  for each   triangle.    Before we  continue   to obtain  the  set  of    oc-ß-y 
ordered  lattice  point  indices,   it  is appropriate  to incorporate  the  central 
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symmetry condition existing with the problem.    This  symmetry affects all 
displacements at lattice points with  indices  larger  than 32. 

Because of central  symmetry of the displacement distribution, we have 

u
x(-x,-y,2)    -    -ux0:,y,z) 

u
y(-x,-y,z)    =>    -u   (x,y,z) 

u2(-x,-y,2)    =    +uz(x,y,z) 

(54) 

(55) 

(56) 

This means that all displacement components at lattice points with the 
indices beyond 32 remain dependent upon the independent displacement com- 
ponents already introduced at the first 32 lattice points. 

Because of equations (54) through (56), the axial-Symmetrie triangle 
configuration has been chosen in Figure 5 and the last considered lattice 
point 32 terminates at the origin. The force equilibrium equations of all 
components at the first 32 lattice points (and of the corresponding points 
in the floors above) therefore represent one complete set of independent 
equations of the problem when relations (54) through (56) are taken into 
account. In order to include all [K] matrix elements of triangles 
associated with all symmetrically independent (96 per floor) force com- 
ponents, the [K] matrices up to triangle 55 must be computed. Oisplacenent' 
components for all lattice points above 32 are dependent according to relations 
(54) through (56). Therefore, it is not necessary to Introduce more dis- 
placement indices or lattice point indices, but rather to use the central 
symmetry propevty in assigning the lattice index numbers for points beyond 
32. If, in equations (48) through (53), IM is larger than 32, it will 
be replaced by 64 - IM, and a weight number IKO - +1 will be attached 
to this point. In this way, the displacement indices of the synmetric 
points are made equal, but the weight number assigned to each lattice 
allows us to distinguish between independent and symmetrically dependent 
indices (and therefore displacements). For lattice points with index 
numbers smaller than 32 (belonging to independent displacements), the IKO 
value is zero. 

In this way, a sequence of numbers to each base triangle, which is 
called the IKO matrix, is generated along with the TM matrices. The 
purpose of the IKO matrix is twofold: 

1. To generate the coordinates for lattice points beyond index 32 
(only coordinates of lattice points 1 through 32 are given). 

2. To multiply the K matrix elements with-4-1 or -1 before collecting 
by the summation process to generate [K*J . All elements 
associated with displacement components at lattice points 
smaller than 32 are multiplied by +1. 
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[K]matrix elements associated with displacements in the z-direction, 
for lattice points beyond 32, are also multiplied by +1 before collecting. 
However, the [K]matrix elements associated with displacements in the x- and 
y-directions at lattice points beyond 32 are to be multiplied by (-1) 
before additive storing in the matrix [K*l . This scheme follows from 
relations (54) through (56). 

For instance, in triangle 44 there is 

IM(3,1) = 64 - 34 - 30 

with IK0(3,1) = 1 ; in triangle 50 there is 

IM(3,1)  »  30 

with IK0(3,1) - 0 . 

With the IM(J,1) matrix and the IK0(J,1) matrix generated, where 
J ■ 1,2,3 , the lattice points for a specified triangle are known.  Since 
the index number of the lattice point in the IM matrix does not reveal 
whether it is an independent or axial-symmetric dependent point, the IKO 
matrix carries this information for this purpose. 

From the IM(J,1) matrix, we get the  0,-0-Y ordered matrix by using 
the t'opologlcal pattern existing for the lattice points in each row.  The 
first row points alternate b«tw?en y-a    points, the second row points 
between ß-Y points, and the third row points between a-ß  points; the 
fourth row shows the same cycling as the first row, and the fifth shows the 
same cycling as the second row. We assign to each point with the lattice 
number I a number 0(1) , such that 

!if I is a 
topological 
OC-point 

!if I is a 
topological 
(3-point 

(if I is a 
0 (I) =»  0   < topological 

' y-point 

Corresponding to the y-a alternation of the first seven lattice 
points, the associated 0 values form a sequence 0,+l,0,+ l,0,+l,0 . The 
next seven form a sequence -1,0,-1,0,-1,0,-1 , and the seven lattice 
points in the third r<w form a sequence +1 ,-1,+1,-1,+1,-1,+1 . 
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The following 21 numbers are periodic to the first 21. This sequence 
of 21 numbers is identical with the elements of the sequence { 0 (I) } , 
where    I «  1,2,.,21   ,   with 

0(1) i{^[ 2  cos ^ (1 +   2k) 2  cos —  (3 + 

-   (-l)k[ 2  cos ^ (-1 +  2k) 

2k)] 

]} (57) 

with    k=   [I-Ie(7)/7]     and     with     Ie(7)     equalling  one   if    mod(I,7)   =   0   , 
or  equalling  zero   if     mod(I,7)   ^ 0   .     Formula   (57)   serves  as  a guide   in 
making a decision about  the  topological  property of  the  lattice  point 
having  the   index     I   .     Figure  7   is  a  flow diagram of  a version following 
the  logical  content of  formula  (57)   that was   used  in  this  investigation. 

Given 
Lattice Point I 

lu =■ mod(I,21)  if mod(I,21) +    0 
M 

IM - 21  if mod(I,21) - 0 

IE(7) - 0 if mod(IM,7) f    0 

1E(7) -  1  if mod(IM,7) - 0 

fwii] 
mod(IM)2) 

mod(IB,3)   -   1 

Figure  7.    Computer Flow Diagram to Determine Topological 
Property of Lattice Point. 
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Going with each   lattice   point   index  through   this   routine,   we   generate 
the     a-0-V     ordered vector     [IM(J,3}   ,   where    .1  -    1,2,3   ,   with   the  meaning 

IM(1,2)     =     index  of a-puinL 
) of  a 
' particiil; 

..........  „..   p  K_.    . base 

T\ . r -   } triangle ,z.)     =     index  01  Y"P0lnt  / 

IM(2,2)     "     index of  0-point  >    H"^ (58) 

IM(3 

With  the    {IMJ    matrix,   the  four   lattice point  indices of  the apexes  for 
all   three   tetrahedrons  above   the   base   triangle   follow   immediately   from  the 
above   definition of  generating   the   apexes  of  the   tetrahedrons. 

First   tetrahedron above   the    .]t^    triangle: 

1V(J,1,1) = IM(1,2) 

IV(J,2,1) = IM(2,2) 

1V(J,3,1) = IM(3,2) 

IV(J,4,1) = IM(2,2) +  32 (59) 

Second triangle above the Jt'1  triangle: 

IV(J,1,2) = IM(1,2) 

IV(J,2,2) = ^(2,2) + 32 

IV(J,3.2) = ^(3,2) r   32 

lV(J,t*,2) = ^(3,2) (60) 

Third tetrahedron above the J  triangle: 

IV(J,1,3) = IM(1,2) + 32 

17^,2,3) - IM(2,2) + 32 

IV(J,3,3) = ^(3,2) + 32 

lV(J,t*,2) = 1M(1,2) (61) 
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With   the   IV matrix,   the  set  of  four apex   indices   is  l.nown;   therefore, 
the   coorJinates   of   the  apexes   can  he  obtained  and   the  elements  of   the    (Kj 
matrix  by means  of equation   (30)   can now be  computed.     The  IV matrix must 
be   saved,   since   it   is   used   to  identify row  and  column of   the     [K]    matrix 
as  well   as   to  generate   the  desired  elements   of  the     [Kj    matrix. 

In   the  next   section,   a  description  is   given of how  the  desired 
elements  of   the  matrix    [K*]      are  generated   from the matrices     [ KJ   , 

Generation  of   the  Matrices  Required To  Solve   for 
the  Unknown  Displacements 

The main objective was  to find  the coefficient matrices of equation 
(37)  and  to find  solutions for  the unkown displacement components    u^u^   , 
where    j - M    +  1   ,  M   + 2,   ...M. J 

i i 

Earlier in this report,  a detailed description was given of the gener- 
ation of the elements of the matrix   lK*J    .     Equation (31) reveals the 
algorithm for obtaining the coefficients of    [K*]   ,  and equation  (37) 
indicates which of the coefficients are actually used.    These two prop- 
ositions are  observed in generating  the matrix elements of equation  (37). 

The actual  procedure calls  for re-indexing of the  unknown displace- 
ments   in a  consecutive,   natural  number  sequence,   since  the  indexing derived 

» from the  lattice  point  indices   (see equation 47)  represents a nonsequen- 
tially ordered   subset  of  natural   numbers.     Re-indexing  is  conveniently 
done   by means   of   the   sequence  containing  the   indices  of  unknown displace- 
ment  components   (or  known force  components)  as  elements.    This  sequence  is 
called  the MSK matrix and has  been generated  simply by picking up only 
displacement  indices which are  unknown  in accordance with boundary condi- 
tions  (38)  through  (45).    The first three numbers In the first column at 
each lattice point are the indices of the x,y,z displacements at that  lattice 
point.    Behind each index is the argument number of its appearance in the 
MSK matrix. 

• 
From the three-dimensional  lattice configuration,  wherein Figure 5 

is the f;round-floor portion, we can see  that  the first 80 equilibrium 
equations contain terras involving the first  160 unknowns only.    This  is 
becausf; the force components of the first floor are influenced by dis- 
placement coefficients of the first and  second  floors only.    The first 
SO lines of the matrix    [K*!     thus have nonzero elements in  the  first , 
160 columns only;   all  further columns contain zero elements. 

The 80 equilibrium equations of all known force components at the 
L-econd floor   (equations 81  through 160) are  in general connected to un- 
known displacements in the first,  second,  and  third floors.    This means 
that the IK*]  matrix elements for  lines 81  through 160 contain.  In general, 
nonzero elements in the first 240 columns. 
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The equilibrium equations of the third-floor force components are of 
the same nature as the corresponding equations of the second floor.  The 
only difference is that all the unknown displacement coefficient indices 
increase by 80.  This means that the submatrix contained in lines 81 
through 160 is repeated in lines 161 through 240, but that all columns are 
shifted to the right by 80 columns. The same considerations apply for all 
floors following.  Matrix  [K*]  therefore contains three diagonal non- 
zero submatrices which are the same in the entire matrix, except for the 
first and last diagonal matrices.  Figure 8 depicts the  [K*J matrix. 

Because the  (K*]  matrix is symmetric, only three different types 
of  80 X 80  submatrices are involved in defining  (K*] . These are 
the submatrices  [A],(B],[C) .  This means that it Is sufficient to gen- 
erate the  [K*]  elements for the' first 160 lines only.  In other words, 
only the proper elements of the  [K) matrices of the set of tetrahedrons 
between the first and third floors need to be taken into account in order to 
generate  [A],[B],[Cj . 

The scheme applied to generate the matrix elements of the  80 X 80 
matrix  [AS22] - |_[A],(B]] and the  80 X 160  matrix  [KS22]- [[B], 
[Cj,[B]J  is basically a screening routine applied to each  (Kj matrix 
element extended over all  [K]  matrices of tetrahedrons in the first two 
layers. The  [K] matrix of a particular tetrahedron in the first layer is 
identical to the  [K] matrix 
of the tetrahedron that is 

—  ii 

its second-layer counterpart. 
Therefore, the [ K] matrices 
for the three first-floor 
tetrahedrons above a tri- 
angle are sufficient, for our 
purposes, to generate IAS22] 
and  [KS22] . 

In the process of giving 
a program description, it was 
shown in the preceding sec- 
tion that the  [K]  matrix 
for each of the three tetra- 
hedrons above a base triangle 
is obtained. With the addi- 
tional information gathered 
in this section, it is now 
possible to identify each 
element of the matrix with 
respect to that element of 
the matrix [AS22] or [KS22] 
(including the right-hand" 
side independent terms) to 
which it will be added.  A 
diagram of this scheme, Fig- 
ure 9, shows how this is done. 

1 - JO       160       240       320      400       480      560      640       720       8 

• (Al IB] 
1 

OD 

,_ IB] Ic) IB] 

o 

KJ 
(Bl tcl (Bl 

o 

'-J 
IB] (Cl IB] 

o 

IB) (C] (Bl 

o 

(Bl (C| (Bl 
<x 
O 

* (Bl (c| |B| 

o 

f 
(B| (c| (Bl 

o 

(Bl * (Bl 

(C)     when  720 x  800 +  boundary condition 

(C'|   when   720 X   720   (broken   line matrix 
for  Incorporated boundary conditions) 

Figure  8. The     [K*]    Matrix 
Configurat ion. 
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Do all iridnnles I - 1,55 

Do all tutrahedrons  KJ - 1, 3 

r 
For   triangle   I,   tetrahedron  KJ   matrix 

Kjjd.KJ)   ;   (i-l,12;j-l,12) 

is   obtained   (see   page        ) 

Do  all   floors   K -   1,2 

Do   all   lines   of   1(^(1,KJ)    ;   1-1,12 

O "1 
^ 

Find   apex   number  M.   of   tetrahedron  and   direction  number 
Ma    of   torte   component   corresponding   Co   line   i 

Calculate   actual   force   index   (see   equation 47); 

If-   3(IV(I.KJ,M,) +   (K-l)   •   32-11+145 

(IV   is   known  r,ince   it   is   generated   to  obtain 
ape:;   coordinatis  of   tetrahedron   before   comput- 
ing    KijCI.KJ) 

Select   estimated   argument   of  MSK  matrix   such   that   associated 
MSK  element   is   as  close  as   possible   to   the   force  index  If 

Iterate   on  MSK  matrix  until   difference   between MSK element & 
If   is   zero  or   shows  change   of   sign.     Zero  means   If   is  element 
of MSK,   sign   change  means   not.     Ir   will   be  either contained 
in MSK  matrix  or  not 

If   is   contained   in 
MSK matrix 

£ *$> 

If is not contained 
in MSK matrix 

© 
© 
© 
© 

• 

Figure   «,     Computer Flow Diagram for Calculating The  Stiffness Matrix  [K*] 
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Register  argument   number   II   under   which   If   lus   been   identified   in 
MSK  matrix   (for   which   zero  difference   has   been  obtained).      II 
represents   the   line   number   in  matrix   [_AS22j   or   [KS22J    in  which 
elements   of   it*1   line  will   be   added   to.     Some   elements   of   the   i^'1 

line  will   contribute   to   the   independent   terms  of   the   II   line. 
Next,   go   to  all   12   row elements   of   the   i1'1   line 

c 
■o e 
C 3 «1 
O -■ iJ 
c. o c 
tfl u aj 
<u e 
C ^ r-< 
O V 
u o 

Do  all   direction  numbers  KA  =   1,3 

Do  all   tetrahedron  apex   numbers     Kg =   1,4 -©- 

Calculate   actual   displj   ement    index   (see  equation 47) 

ld =   31IV(I,KJ,KB) +   (K  -   1)   32   -   1]+ KA 

(IV available;   see  note   above) 

Select  estimated  argument   of KSK matrix,   such 
that   associated  HPK  element   is   as   close  as 
possible   to  the  displacement   index  Ij 

Iterate  on MSK matrix  until   differencj   between MSK 
element  and  Ij  is  zero  or  shows  sign of  change. 
Zero  means  Ij  is  element  of  MSK,   sign  change means 
it   is   not.     Ij  will  or   will   not   be   contained   in MSK 
matrix 

Ij   is   contained   in 
MSK matrix 

^ 

Ij is not contained 

in MSK matrix 

0 

Register argument numb 
under which l(| has bee 
identified in MSK m.Hr 
(For which zero di)fer 
has been obt .i ined .) 17 
represents the column 
numbe r 
[KS22] 

i n  ma t r i x   [AS 2.'] 
,   in  whi< li  e lemi 

of   the 

(KA - i) + KB] 

i'll li ;ülumn  and   tin 
long to. If i' lemenl : 

or y component (test K; 

J  ) , multiply with 

1 IKO(I,K,I.KB) 

a number +1 , in order t 
satisfy central svmmetr 
conditions (54) and (55 
Accumulate Che so-modif 
element in element at t 
11 line and 12 column n 
matrix   [AS22]   or   [KS22] 

© © 
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0 © 

has   been  Identified   in 
ieen  obt;i ini'U) .      I 1 

or   [KS;'2]   in which 
le   elements  of   the   i^" 
ms   of   the   II   line. 
1 ine 

=   1.3 

K3 =   l.A 

^1 
-©-, 

lee equat ion 47) 

" ! ] + KA 

latrix, such 
close as 
ld 

e between MSK 
af change. 
change means 
itained in MSK 

Register argument number 12 
under which Ij has been 
identified in MSK matrix. 
(For which zero difference 
has been obtained.) 12 
represents the column 
number in matrix [AS22J , 
[KS22J , in which elements 
of the 

14 • (KA - 1) + KB]
th 

column  and   the   i^h  line  be- 
long     to.     If  element   is  x 
or   y  component   (test  KA  

< 

3    )   ,   multiply  with 

(1   -   2   •   IKO(I,KJ,KE)] 

a   number  ±1,   in  order  to 
satisfy   central   svmmetry 
conditions   (54)   and   (55). 
Accumulate   the   so-modified 
element   in  element  at   the 
II   line  and   12   column of 
matrix   [AS22]   or   [KS22] 
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© 
© 
© 
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Ij  is  known displacement   inde> 
Check  if 

mod  3-  1IV(I,KJ,KB)-1] +KA,96 

is  <  19 and  / 2   (displacement 
at  boundary) 

1 

No                                Yes 
J  k <K 

Matrix element  at  it*1 

line and 

r4(KA -  1) + KBl
th 

column is negatively 
accumulated in the II 
element of the inde- 
pendent terms of the 
unknown u equations 
A21(I1) or K21(I1) 

lot contained 
matrix 
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Since  the   IV matrix Is generated  for  each  triangle  index  I  according 
to Figure  9,   the  only  Input required  for  this  routine  is  the    x-  and  y- 
coordinates of  the 32 ground-floor   lattice  points. 

After complt   ion  of all  the indicated  looping processes,  all  of  the 
12 X   12  elements  of  each     [K]     matrix belonging  to every tetrahedron 
in the  two  layers have been  screened and  properly accumulated  in the 

, matrices     (AS22)     and     [KS22]     as well  as  in  the  independent vectors 
[A21]     and   (K2l]   .     Therefore,   the  elements  of  the matrices     (AS22]     and 
[KS22]     along with the  independent vectors     [A2l]     and     [K21]     are complete 
and considered  to be generated.    The matrix represented in Figure  8  is 
therefore established. 

The  systems of  equations belonging  to the  Figure 8 matrix  is undeter- 
mined,   since  the matrix has  720 lines  and 800 columns.    The 80 missing 
equations are  obtained by taking  the  internal  boundary conditions   (43), 
(44),   and   (45)   —   in other words,   those "inside"   the body —  into account. 
In line with  the  first-order  approximation used  throughout  this  study, we 
can enforce an approximate version of   (43)  and   (44) by making all  u    and 

u    components at the  tenth floor equal  to the corresponding u    and u 

components at  the ninth floor.     By corresponding u    and u    components,  we x y 
mean that the u    and u    values  for  lattice points with the  same x-   and x y 
y-coordlnates  in both  floors are considered.     Condition  (45)  is satisfied 
by putting all u    values equal  to zero at  floor number 10.    These  three 

additional  conditions represent 80  linear  equations which now supplement 
the set  of  720  linear equations with 800 unknowns  (reference  the Figure 8 
matrix).    The  80 equations are  as  follows: 

Un(i)+720    =     Un(i)+640 (62) 

VjH-720    =    0 (63) 

■ 

where     i =   I,2...48     and     j =   1,2...32   .     Here,     n(i)     is   the   sub-sequence 
of  the   first  80 elements  of  the[MSK] matrix  that  contains  only x-  and  y- 
directed  unknown  displacement   indices;     m(j)      is   the  sub-sequence   that 
contains  elements  of   the[MSK] matrix associated  with unknown z-directed 
displacement  indices. 

The  unknown with   indices  greater  than  720 appear  in the  last  80 
equations  of   the   system of  720  equations.     Matrix    [B]    represents   the 
coefficients  for   them.     Substitution of  equations   (62)  and   (63)   into 
these   last  80  equations  modifies  the   set  of  equations   to   the  extent   that 
matrix    [B]   is  absorbed  into matrix    [C]    . 

We  may write   the   last  80  equations   in   the   following manner. 
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Mi 640 

48 

i-l     ' 
u(u) 

64(>^n(j)     640+n(j) 

32 
u(u) 

640+m(j)      64u+tii(j) 

48 
+y K* u(u) 
^    i,720+n(j)   U720+n (j) 

32 
(u) 

720-f-m(j)      720+m (j) (64) 

where     i =  641,   642,   ,,.   720   .     In equation  (63),'we  have   the  first  sum 
term,   the     [BJ    matrix  term of Figure  8.    The next  two  terms   (the    [C] 
matrix  terms),   the  last  two   terms   (the     [BJ matrix  terms),   and  the  two 
separate   terms  for  the     [B ]    and     (CJ   matrices correspond   to the  separa- 
tion   into  x-   and y-directed  displacements  and z-directed  displacements. 
Now we  substitute equations   (61)   and  (62)   into  (63)  and obtain an equa- 
tion  containing only displacement  indices     561...720  : 

^ 

.00 *       (K) K. .   u. 

640 

E **■ u(u) 

48 

4^ VKi,640fn(j) + Ki,720fn(j)/ U64m-n(j) 

32 
, (u) 

640fm(j)   1640fm(j) (65) 
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where     i =   6A1,  642,   ...  720   .     The  first  term (corresponding  to  the   [B] 
matrix and   the   independent   term)   is   not   altered.    The  second   two   sum  terms 
correspond  to  the  new matrix    [C]   , 

According  to equation  (65),   matrix     [Cj     can be generated  in  the 
following manner.     First,   all  column elements  of  the     [ß]     matrix with   the 
indices    m(j)   ,  where    j =  1,2,...32   ,   are zeroed out.    The matrix obtained 
is  called     [B1]     and  is an  (80  x 80)   matrix.     Matrix    [C]      is   the  sum of 
matrices     [C]     and     [B1]   . 

With   the "internal"  boundary conditions   (61)  and  (62),   along with  the 
system of  equations   based on  the  matrix depicted earlier   in Figure   8,   we 
can obtain  an equivalent  system of   720 equations which  correspond   to 
the matrix  inside  the broken line  of Figure 8.     In this case,   the  sub- 
matrix    [C]     of the  last line is replaced by the matrix    [C] 

Solutions  for  this system of equations  have  been obtained  by apply- 
ing  the method of Choleski.*    The  accuracy of  this method has  been 
verified  by computing a  test case   for  homogeneous material,   so  that 
the   stress   and  displacement  distribution  could   be  obtained  by  analytical 
means. 

For  our boundary problem,   the displacements in tho homogeneous test 
case are exactly linear.    Therefore,   the approxlmaticn abed in this program 
becomes an exact solution.    The  displacements  obtained as  solutions  of 
the  system of  720  linear equations   (using the Choleski method)   agreed 
in  the   first  7 digits with  the displacements  ootai-ied  by analytical 
means. 

This  test result carries with it the Itnpllcotion of  the correctness 
of the     [K*]    matrix coefficients.     Correctness of the    [K*]    matrix is 
maintained   for  the   fiber-matrix case,   since  the  scheme  to generate 
the exements of     [K*]     is  independent of  input  values. 

Computation of  the Stress Components 

The  stresses  for each  tetrahedron can now be calculated with   the 
use of equation  (21),   since all    u's     are now known;   in other words, 
they are  either given or are  solutions  of  the    ufu)    equations. 

The remaining  task is to find  the  12 proper displacement component! 
in the correct order  for each tetrahedron  in every layer.     This is 
accomplished  in a manner similar  to the way the equation indices of a 
[KJ    matrix element were obtained. 

* Also known as Crout's scheme. 
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In Figure 10, the scheme to obtain the six stress elements (the 
a matrix) for each tetrahedron is demonstrated. Given are all known 
displacements and the solution vector u(i) , where  i = 1,2,...720 . 

The meaning of the six stress components in the order appearing in 
equation (16) is obtainable from equation (10): 

ffi = = cr. xy 

a     =    a 
2    y 

as   -    a xz 

3       z a« = a. yz 

With  all of the a  components  obtained,   the  stress  distribution within 
the  three-dimensional domain  can be  obtained,since   the  coordinates of the 
tetrahedron centroids are  the   field  point coordinates  of  this  distribution 
approximation. 
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Floor 10 Floor < 10 

IF 

Set counter 

Do all tetrahedron 13= 1,3 

Do all base triangles Ij = 1,55 

Increase value of K., by one 

Do all four tetrahedron apexes 

Do all three displacement directions K, = 1,3 

Displacement is in the 
z-direction of the 
tenth floor; therefore 
is zero. 

^(Kz) = 0 

Compute a c t u a l index of d i s p l a c e m e n t 

Disp lacement i s in x- or y - d i r e c t i o n 
in t e n t h f l o o r and must be equa l t o 
c o r r e s p o n d i n g d i s p l a c e m e n t in n i n t h 
f l o o r . Thus reduce I j by 96: 

F i g u r e 1 0 . Compute r F low D i a g r a m f o r C a l c u l a t i n g S t r e s s C o m p o n e n t s . 
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a n 

Select  estimated  argument  of MSK matrix  such   that 
associated MSK element   is  as   close   as   possible   to 
the   displacement' index   Ir| 

•■,-'   ' 

If  estimation w;ss   erroneous,   iterate  on argument  of 
MSK  matrix  until   difference   between MSK element   and 
icl   is   zero  or  shows   change   of   sign.     Zero means   Ij 
is   eTement  of MSK  matrix;   sign   change   means   Ij   is 
not   element  of MSK  matrix   (unknown  or  known dis- 
placement ) . 

1 
i 

j   is   contained 
n  MSK  matrix                             > 

Ij  is  no:       ntained 
.               in MSK matrix 

<$v 

Register argument 

number IM for which 
zero difference has 

been obtained.  1^ 

is now the index 

proper of the solu- 

t ion vector of u (i). 
For central symmet- 

ric lattice points, 

the solution must 
change sign when 

d isp 1 acemen t is in 
x- or y-direction 

(K ')- 

Kr3 

0 
© 

Dx(K
2)  =   1 

11 

mod)3[lV(l2,l3,Ka)   -   l]+ iq   ,   96( <  19 

and  does   not  equal   2;   otherwise, 

Dx(Kz) =  0 

© 
© 
© 

Aft« 
all 
Kz=l 
tria 
in  p 

Now 
for 
acco 
the 
have 
when 
and 

The i 
with 
of  ti 

Calculat 
componen 
next  tet 

4> Kj^ 

DX(KZ) =   u(lM) Dx(Kz) =   ^M)  [l   -   2   •   IC0(lail3.K,)] 

where     1   -   2   IC0(l3 ,13 , K, )    equals   1   if   the 
lattice   point   is   independent  or  eauals   -1   if 
the  lattice   point   is  dependent,   as   far  as 
central   symmetry  is  concerned 
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1 
■gument of MSK matrix such that 
lent is as close as possible to 
idex   Ij 

roneous,   iterate   on  argument  of 
ference   between MSK clement  and 
change  of  sign.     Zero  means   Ij 
itrix;   sign  change  means   Ij   is 
iatrix   (unknown or  known dis- 

-<^ 

Ij is not contained 
in MSK matrix 

© 

Dx(Kz) = 1 

djajlV^j.Ia.Ka)  - l] + iq   ,  96J < 19 

d   does   not  equal   2;   otherwise, 

Dx(KZ) = 
0 

0 
© 
© 

i 
After  exhaustion of all  Kj   and  Ks, 
all   12   displacements    Dx(Kz).   w!u'r1. 

KZ»>1,2, ...12,   of   tetrahedron   I3   of 
triangle   I3   at  Floor  I  arc   obtained 
in  proper   order. 

Now we   can  calculate   the   stresses 
for   this   particular   tetrahedron 
according   to  equation   (16),   since 
the  matrices   (CHDIIA]-

1
   =  (CDA} 

have   been  obtained  as  a   by-product 
when  matrices  {K} were  calculated 
and   then   stored. 

a    =   JCDAJJDXJ 

The  six a  values  are   printed  along 
with   the   coordinates  of   the   centroid 
nf   the   tetrahedron 

1 

' 

Calculate stress 
components {a)  for 
next tetrahedron 

2)  =   U(IM)  [l   -  2   •   IC0(l2,l3,Ka)] 

1   -   2   IC0(la,I3,Ka)     equals   1   if   the 
point   is   independent  or  equals   -1   if 

tice  point  is dependent,   as   far  as 
symmetry is concerned 

© 
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NUMERICAL RESULTS FOR THE THREE-DIMENSIONAL SOLUTION 

Figure II depicts a cross section of a composite under transverse 
loading. Figures 12 through 20 illustrate the variation of the stresses 
in the fiber direction at the interface points, indicated in Figure li, 
in regions near the free end of the composite.  These stresses, which 
appear because of the difference of elastic constants in the fiber and 
the resin, are similar to the stresses obtained with the plane stress 
assumption for planes far from the free end. 

The three-dimensional analysis shows the existence of shear stresses 
of considerable magnitude at the interface points depicted 
In fact, these shear stresses are about one-half the peak 

axz and a 
in Figure 11. 
shear stress axv from the plane analysis.  The numbers have been derived 
from numerical calculations of the stresses within the ar^a of triangle 
41 (see Figure 5). 

v   . ,-• 

■ 

Figure  11.     Cross Section of a Jomposit'-, 
Under Transverse Loading. 
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SOLUTIONS OF THE PLANE PROBLEMS 

In regions of the composite under transverse loading that are far 
from the ends (see Figure 22), it is possible to realistically assume 
plane strain or plane stress.  It will be plane strain if the displace- 
ment u2  is constrained at the ends  z = 0 and z "  t ;   it  will be 
plane stress if the ends are free of loads. 

Element of 
Analysis 

Figure 22, Composite Under 
Transverse Load. 

< ' 

It is assumed that the transverse loads P are applied to the coni- 
posite far from the chosen representative element of analysis. Also, it 
is assumed that the composite cannot have expansions in the y-direction; 
in other words, compared with the dimensions of the typical element, the 
length of  the  composite  is  infinite  in  the y-direction. 
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With these assumptions,   the boundary conditions  for  the  representative 
element   (Figure  23)  are: 

K) constant ±k 
Resin 

x=±c 

Nx.±( 
= o 

(CTxy) xy / ^b 
= o 

(65) 

Fiber 

Figure 23.    Representative Element. 

At the  interface,  between the  fiber and matrix,   the  following conti- 
nuity conditions must be satisfied: 

f m f m 

(67) 

CTn    "    an ' CTnt ~    ant 

The superscript    f    indicates fiber and the superscript    m    indicates 
matrix.    The    n    and    t    are the normal  and tangential directions at the 
interface points,  respectively. 

Moreover,  a  symmetry condition exists   for  the displacements and,   con- 
sequently,   for   the stresses of the representative element.     That   is,* 

u (x,y)    =    -u  (-x,-y) 
A A 

u (x,y)    =    -u <-x,-y) 

(68) 

The stress distribution was solved using the finite element method 
with the triangular net shown in Figure 24.    This was explained in detail 
for the three-dimensional solutions in the last  section. 
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Once  the stress distribution  is  known,   the  transverse modulus of the 
composite    E^        can be  found.     In  fact, 

ET e k/c 

where 

Then, 

= /T| 

E,,   -   f • f (69) 

The   total applied  force    P    is  obtained by adding the  forces at the 
x    direction  (ax   •  dimension at  the    y    direction)   for  the   triangles 
bordering the boundary    x = c   . 

By divislng equation  (69)   setting    k =  1    by the modulus of the  fiber 
E£   ,     the nondimensional  expression  is obtained. 

v    =   fl   =   J. . -P (70) 
X Ef 2       Ef 

In  the  following section,  numerical results of the  two-dimensional 
analysis are given. 
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NUMERICAL RESULTS OF THE PLANE PROBLEMS AND TEST RESULTS 

The trajectories of the principal stresses in the typical element of 
a composite material under transverse loading are represented in Figure 25. 
The nonhomogeneity introduced by the presence of the fiber causes a devia- 
tion in the trajectories with respect to the homogeneous case where the 
trajectories are obviously parallel to the x and y axes. This fact 
suggests the presence of stress concentrations, which will be demonstrated 
effectively in the following discussion. 

A parametric study was performed to evaluate the influence of the 
matrix and fiber properties on the stress distribution. Figure 26 shows 
the radial and tangential stresses along the interface for composites with 
60 percent of the fibers containing the same matrix material but with 
different fiber material. One composite has a modulus relationship of 
Ef/Em = 20, and the other has a relationship of Ef/Em = 120 , These 

correspond approximately to glass fiber and boron fiber composites with 
epoxy resin, respectively. From the curves of the figure, it is possible 
to deduct the slight influence the material of the fiber has in the stress 
distribution. This conclusion is correct in all cases in which the fiber 
is considerably harder in comparison with the matrix, as usually occurs in 
most of the composites. 

The nondimensional ordinates a~/a  .   and T^n/a_   of the curves wr    avg rg    avg 
were obtained by dividing  the actual stresses    &      and    T *    by the  average r ry 
stress   aavg    found by averaging the  stresses    ax    at the triangles 3,   12, 

24, 36, 44 and 49. 

Another parametric   study was performed by taking the volumetric  con- 
tent as variable,  keeping tne modulus relationship    tJ^m   constant.    The 

results are  indicated  in Figures 27 and 28, where  the  stresses along  the 
interface are plotted.    As is easy to imagine,  the peak stresses are greater 
when    Vp    is increased. 

Figure 29  indicates the displacement component at the x-direction for 
composites with    %/Em * 20 and  120  .     In these curves it  is possible  to 
observe  the  small influence of the fiber deformation in comparison with  the 
total deformation, which is  carried almost completely by the matrix. 

TRANSVERSE MODULUS 

A parametric  study was performed to compute  the transverse modulus of 
several composite  types.    Two different conditions were considered:     (1) 
plane  stress on the    x,y    plane,  and  (2) plane  strain on the same plane. 
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Figure 25.     Stress Trajectories of Transverse Loading. 
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S-      -   120 

Plane Stress 

Figure 26.    Radial  and Tangential Stresses 
Along  the  Interface. 
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a , degrees 

Figure  27.     Stresses Along the  Interface With 
Volumetric Content Variable and 
Modulus Relationship Constant. 
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Figure 29.     Displacement Component at the x-Direction. 
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I 

Figure 30 gives the transverse modulus of the composite E^    for a 
plane stress condition. Figure 31 gives the modulus of the composite for 
plane strain as a function of the modulus ratio E^/^ , and by taking the 

volumetric content as parameter. It can be appreciated that the influence 
of the fiber modulus on the composite modulus is small, in accordance with 
the displacement distribution discussed previously. 

Figure 32 gives a comparison of the transverse modulus obtained with 
Ekvall's formula, 

EJE 
f S 

VfE
m 

+ 
r m VmEf m r 

(71) 

. 

and  the results from the computer  analysis, 

i2 r 

10 

E    6 
m 

4 " 

2 - 

' 

20 40 60 80 100 120 

m 

Figure. 30. Transverse Modulus of a Composite as a 
Function of Fiber and Matrix Modulus and 
Volume Percentage. 
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Figure 33 presents the comparison with respect  to the  Shaffer's 
formula, 

m 
:^ 

|(o.8247^  - Vf j 

1  - 0.82A7 Vf 1  - gS 

for Vf<0.68 (72) 

and 

m for V i0.68 (73) 

As observed  in the figures,  the transverse modulus from the micro- 
mechanical analysis is greater  than the corresponding modulus in the 
Ekvall and Shaffer formulas, especially for  the higher volumetric  conterits, 

The  transverse modulus of a composite  obtained by plane stress analy- 
sis was presented  in Figure 30 for different volumes and material contents 

!l 

Figure 33. 
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of the reinforcement and the matrix.  This modulus can be approximated 
by the following formula : 

  (74) 
E E 

in 
r|L-v£|+ (i+M 

It is  iateresting to note  that  this  formula is identical  to Rosen's 
formulfc* for   longitudinal  shear.     The  difference  is that  instead  of  the 
G moduli,   the E moduli of  the different materials must be used  as indicated 
in equation  (74).     Allowing for   little error for low  fiber percentages 
and    E./E <100  ,   this formula has an error  showing a 4 percent  higher  trans- 

f    in 
verse modulus  at higher values.     The  following is a formula which permitf 
errors  of  less than 1 percent for all possible combinations. 

E 
m 

(lW8V«   -  13Vf + 3-78]xnM   + 6-666Vf  -  1-27 (75) 

* B. W. Rosen, N, F. Don, and Z. Hashin, Mechanical Properties of Fibrous 
Composites,, NASA CR-31, Contract NAS-470, General Electric Corporation, 
April  1964. 

54 



APPENDIX I 

PROBLEM OF FIBER-REINFORCED COMPOSITE SUBJECTED TO 
TRANSVERSE LOADING SOLVED BY POIN'i-MATCHING METHOD 

When the weight is the only body force, the plane strain problem can 
be solved by finding the polynomial solution of the differential equation 

Li. + 2 —äiö-+ äii   =   0 (76) 

ox4       a^dy2    ay4 

which  satisfies the boundary conditions.     In equation (76),     6    is  the 
Airy stress  function.     Stresses and displacements  are  then defined  as 
follows : 

üy   "    fa (78) 

axy 9x ^v (79) 

ux 

1   [/(1"V)^dy  " V^] + f
2
(x) (81) (1+v 

uy  =      E 

The  strains are 

G- ' T 
5u 

cy   Sy 

au     su 
—£ + —i ^ xy       ay     sx       E     axay 

e   = _x + lJL . 2(H-v) ^19. . 
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From equations  (80),   (81),   and   (84), we have 

,3« r^30 ^aa p        fdf,        df2l J^^I ^dx+      ^dy+2r^l+_L 
T dy + 2 r0-11-+ —::—    |-rl-+-rr:l    =    0 (85) 3x3    y a^ay      i.va    Idy        dxi y    ' 

The polynomial  solution to the Laplace equation  (harmonic equation)  is 

Od-iy) 
N 

i (:■) 
i CJ 

(iy)    x 

.2n    N-2n 

n=0 

N 

(iy)"" x"  -+      V    I (iy)--J   x 2n+l    N-2n-l 

V    H (-i)" y2n -N'2n + i y f N 1 (-DV"^-2""1 

h        V*l n=0  l2n+^ 

«N  (x,y) +  i xN(x,y) (86) 

Therefore,   the  solution to the  biharmonic equation,   in region    f(fiber)   , 
is as follows: 

6      =    K^xy3 + K3xya + KgXy + K* + K5y3 + 

K8y3 + l^y + Kex3
y + K9xay + K^x3 + K^x' 

M m       #     , 
n    2n    2m-2n+l 

in=2 n=0 

M m 

B 
i 

iff=2 n=0 

M m 

C 

M m 

L,        m    2-    [in, 
,  ,xn    2n+l    2m-2a  , 
(-1)     y x + 

L>        m    LM    \2rri-l) 

.   , vn    2n-H    2m-2n+l   . 
(-1)    y x + 

n^2 n=0 
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M ^ / » 

Z-/   Dm   2-f        \2rrfl/ 
. . .n    2n+2    2!n-2n 
(-1)    y x (87) 

m-1 n-0 

By substituting    Q     from equation   (87)   into equations   (77)   through   (81), 
the  following  stresses and  displacements are   obtained: 

6K,xy + 2K x + 6K.y + 2K    + 

M m 

E ^ x;d(2")(2"-l><-l)n'2<°"l,■• 
m-2 n-0 V 

M m 

L B. ECl) 

2m-2iTfl 

(2n+l)(2n)(-l)n y2n_1 x2ra"2n + 

m-2 n«0 

M m 

C„ 

m-2 n-0 

M' m 

M m 

2-^      Cm       iL ^2rrf 1/ 
/O_LI \/o   \/   i sn    2n-l    2in-2n+l   , (2n+l)(2n)(-l)    y x + 

£ ^ E ::: 
nr-l n"0 ^        ' 

(2rrf2)(2n+l)(-l)n y2" x2,n"2n (88) 

6K8xy + 2K9y + 6K10x +2^^ 

E A>n      Z ('l) <2'n-2^1)(2m-2n)(-l)n y2n x2"1-2""1 + 
nf2 n-0      "' 

M m    /    v 

Z B-"     2Q(2-2n)(2m-2n-l)(.l)n
y

2^1x2'n-m-2 + 
nt-2 n-0 

M m 

iC Cm 2(2^1) (2m'2n+i)(2m'2n)('i)n y2n+l x2n,"2n"1 + 

(Continued) 
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n m i        i 

L    Dm       L   2n+l     <2m-2n><2m-2n-1)(-1) 
_1  n 

2n+2    2m-2n-2 /an, 
Y x (89) 

rrPl n-0 

^y    =     "SV3  - 2K8y  - K3  - 3Kflxa - 2Kt 

M m 

I *» Z P (2")(2 m -»«a-ix/   i \n    2n-l     2m-2n m-2n+l)(-l)     y x 

irF2 n-0 

M m 

i -1 a B..     'S        I      I      (2rt+l)(2m-2n)(-l)n  y2n x21""20"1 

nF2 n=0 

M m 

C„     \        I I      (2rrfl)(2m-2rrH)(-l)n  y2n x2m'2n 

m"2 n=0 

M m 

npl n-0 

'2nrfl\ 

I2n+1 

2nTH\ 

2n+ll 
/O-J-OS/T    o   \/  1 \n    2n+l     2m-2n-l (2ni-2)(2m-2n)(-l)     y x (90) 

4 
vf     (   r 

— - ^[3 (l-vf|xay  -   (2-Vf)y3]+ K, [(l-Vfjx*  - 

2-vf jyaj  - K3[2-vf]y  . K4vf + 6K8[l-vf]xy + 

2K9(l-Vf]x  - KeQl-vfjy3+ 3vfxayj   . K9[2vfxy]   - 

Kio[3 1-Vflya + 3vfx8] - ^x^f + woy(1-Vf)} + 

[   m-2 n-0 u 

2(n-l)     2m-2n+2 2n    2m-2n  + 
y x -  V£(2m-ZnTl)  y       x 
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M m       fo    \ 
y Bm v m (-i)n [(i-vf) <2n+iM2n). 
L       m    L    In U      f       2m-2n+l 

M m 

+     V     Bm 

m=2 n=0 

2n-l     2m-2a+l      u  /0    „  ,    2rrfl     2m-2n-ll 
y x - vf(2m-2n)  y x J + 

M m 

Ic» iP^iH^i^r 
n=0 

2n-l     2m-2irf2 .„     ,   ...     2n+l     2m-2nl   , 
x - vr(2m-2irl-l)  y x + - vf(2m-2rrfl)  y'' 

M m . 
Er-     2nTH n   r 

m    ^     2n+l I        f 

[2n+2)(2n+l) 
2m-2n+l 

npl n=0 

2n    2m-2iTl-l 
y     x 

..   ,,    0   v     2n+2     2m-2n-ll - vf(2m-2n)  y x J 

f   f        r \ —  | -K^  l-vf)x3 + 3vfxy3]   - K3(2vfxy)   - K3(vfx)- 

K8 3[l-vf]x»+ 3vfya]   - KaJ2vfy]   -  K7Vf + 

K8[3(l-vf]xy»  -   (2-Vf)x3] + K9r[l-vf]y8  -   (2-vf)xa]  + 

(91) 

l+vf  J   « ™      2m| 

i rn-2 n=0 

(2m-2tTfl)(2m-2n)   < 

2rrfl 

1 2n+l     2m-2n-l      vi   ..   .     2n-l    2m-2rTfll   . 
y x - vf(2n)  y x I + 

M m 

B, Z B
" t Q <-i>" [('-^i ("-2^-2"-l) 

m-2 n=0 

(Continued) 
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2n+2    2m-2ri-2 ,. ^,.     2n    2m-2nl 
y x - vf(2n+l) y      x J    + 

M m   /o     i\ 
E r- (2nif M n   fi.       i   (2m-2tTfI)(2m-2n) 

c* LW+ij ("1) lrVfl ^—2^21— 
rrF2 n"0 

2n+2    2m-2n-l       .,   ,n.,s    2n    2m-2n+ll   , 
y x - v   (2n+l)  y      x I + 

M m 

D, I D» Z G (-1>" [H (2-2^3m-2-1) 
npl n=0 

2n+3    2m-2n-2      „   ,_   ...     2n+l    2m-2 
y 3C - Vj(2n+2)  y x "] (92) 

In order  to satisfy  the equation    p(x,y) =  9(-x,-y)   ,  the polynomial 
solution  to  the biharmonic  equation in  region    m(matrix)    is  simplified 
as follows : 

.m X7     3 0       »    l^xy3 + K3xy + K y3 + Kax y + K11x
a + 

tnF2 n-0 

,  ,.n    2irH    2m-2n+l _, 
(-1)    y x + 

M m 

i ^ E c::) ,  , Nn    2n+2    2m-2ii .„_. 
(-1)    y x (93) 

ra=l n»0 

The  stresses and displacements can thus be  found by combining equations 
(77)  through  (81)  and   (93): 

m 
^x 6K,xy + 2K   + 

M 

i ^ z D <■l>■■ <-i) 2-2""1 ^ 2m-2n+l 

nr2 n-0 
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M m 
r^ - r- /2nTfl 
2- ^       A    o t'V     (2n+2)(2trfl)  y2n x

2n,-2n 

i-l nto    2n+l/ 
(94) 

M 
E-     r-.     2nrfl 

m   L    2^1/   ^^     ^»-^^(Zm-Zn) y2n+1 x2"-2"-1 + 
m-2 n-0 

M m 
Z-      ~   /2nri-l 

D
m     2.    2n+l     ('l)     <2n-2nH2m-2n.l)  y2n+2 x2»"2«^ 

wl n-0 
(95) 

xy ■3Kiy8 - h - 3K8x> 

L     C*    L    2n+l     ^^     <2n+1)<2m-2^1) y2" 2m-2n 

ni-2 n-0 

M m 

n«-l n-0 

2nrfl 

2n+l 
(-1)°   (2rH-2)(2m-2n)  y2n+1 x

2n»-2n-l 
(96) 

E u 
m x 

iff«2 n« j    2n+l 

(l.v  \  2n(2ttfn    2n-l    2m-2rrf2 , 2n+i     9™ o ' 
I1 V«n|  2in-2itf2    y x " vm(2m-2n+l)  y21^1 x2n»-2n 

(Continued) 
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M m 

+ 

npl n-0 
15» zP^H^i^^- 

,,   /0     0  v     2n+2    2m-2n-l .„_, v
m(2m-2n) y x I (97] 

2n    2m-2trfl 
y    x 

„    m 
"mil 

\ [{l-\]v*ya -2x3) - v3]+ ^^^-^y]+ 

ra-2 n-0   »2n+1' 

b\      (2m-2iTfl)(2m-2n)     2n+2    2ra-2n-l 
^^I     '"        2n+2 y x 

IM m      .        , 
,_   ...     2n    2m-2n+l 

vm(2n+l)  y      x 

npl n-0 

N (2m-2n)(2m-2n-l)    2n+3    2m-2n-2 
2n+3 y X 

2m-2nl x      J Vm(2n+2) y2"*1 X-"— I (98) 

A basic  represeritative element of fiber-reinforced composites under 
lateral  loading is dupicted in Figure 34.    For  the convenience  of numerical 
calculation,   the boundary conditions for each  assigned point of  the element 
are  listed  in Table I.    The Cartesian coordinates of all points are  listed 
in Table II.     The normal and tangential  stresses at the interface are 
shown in Figure 35.     These stresses can be expressed as 

an    -    ax cosacp + n     sins(p  2T       sin cp cos cp (99) 

Tj.    -      oy-ax    sin cp cos cp + TX    cos^p-sin'cp (100) 
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TABLE I.    LIST OF BOUNDARY CONDITIONS OF VARIOUS POINTS 

Point 
No. Boundary Condi dona 

No. of 
Boundary 

Conditiona* 

No. of 
Polnta 

Tbtal 
Boundary 

Conditions 

f        ■ i- T"   -0        uf.u"                             v£.v".0 
*y 

6 

4 • *: Tnt- 
■                 f      ■       £ _   ■ 

T«t               un ■ un ' ut " ut 14 SC 

4-< •i" T"   • 0       uf • u" - k                   v£ - v" 6 

4-» »" • 0 18 

^■o 
uf.k 3 

^■o 
u£.k ia 

^•o u-.k 8 

4-° u    ■ k                               v    ■ 0 3 

^■o 
v-.O 12 24 

10 c-0 
v-.O 6 

TOUl » 148 

p At each point. 

Point 

TABLE II. CARTESIAN COORI INATES OF VARIOUS POINTS 

J No.  of 
No. X y ♦ Points 

c-a b 
2 

0 1 1 

c-a cos 4y | - a  sin*J 30 i 1,2 14 14 

c !-• 
11 

2 
1 1 

c- + J T5 
b 
2 

1,2 9 9 

c b 
2 

1 1 

c 2      J 10 
II 

2 1,2 9 9 

c !--i¥ 1,2,3,4 
4 

c b 
" 2 

1 1 

S Jfi -i 
2 

0,1,2 11 12 

10 J¥ 2 
0,1,2 3 

Total No. of Points 35 
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^•u-, 

Figure 35.     Interface Axis. 

^mt 

ax cos'qp + av sln'^ + 2axv s^n ^ cos ^ 

[CTy-ax|   sin cp cos {p + axy[cosaqp-slnacpj 

u cos cp + v sin qp 

u sin (p + v cos cp 

(101) 

At  poiut    b.   , 

c   - a cos «Pi 

Vi    -    2  " a 8ln «Pi 

(102) 

Equations which  satisfy the ten types of boundary conditions are 

listed in this section.     In these equations,    o^   I (yl »or. a37,al,ota,..., 

al9\     identifies the  19 unknowns    (VB^C^D^C^^.K.K^.W,,)     of equa- 

tions (88)  through  (92)  and  (94) through  (98). 
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TYPE 1 EQUATIONS 

f 
Ox 

/   b  ft   m(   b m\ 
|c-a»2'0'i) " (Ixlc-a'2'Q(i| 

(c-a'|'ai) 
m 
*xy 

f/   b  f^   m/   b m\    n 
u (c~a.2'ai| " u lc"a'2'ui) 

/   b f 

v|c-a'2'0i| 

TYPE 2 EQUATIONS 

k[c-a COS(3o)   '  2  " a Sin|3o)   ' «ij 

!• 
[c-, co.(5l) . | - . ,u$] . ^ - 

|?il.|-'H3i)-»:jJH5i) + 

ky[c- C08(3o)   • I " ' H-lo)   • "l]   ' 

c-a cos 

(103) 

(104) 

(105) 

(106) 

(107) 

(108) 

o      c-a cos 
xy1 0    (109) 

where 

I,.... 14 
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4- '°s($ • t - • -is) • •:] - 

j »HS)+ 

!■ 

=    0      (110) 

where 

,14 

"£f-= HS) ■ I - • "-(S) ■ *(| - 

HS) > I - = ='"(S) • •"]) c-a C( ■•"Zl+ 

./nil    t c-a c„,iSj)   . | . a sl„(=i)   . ^j 

4-a cos(S) ■ i - "-is) •«:]) »HS) ■ 0      (HI) 

where 

j    "    1 1A 

! 
uf[c-a c„s(ni) . |. . sl„(nl) , ^ . 

(S) ■ I - • HS) • «"11 -IS) c-a cost 
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-   I "y c- "a\m] • I ■ • sln(?ol ■ "i   ■ 

=    0      (112) 

where 

j    =    1,...,14 

TYPE  3 EQUATIONS 

b f\ m      b m 
■ C'2   ■  a'ffil   " Py C'2  ■ ^^i      = 

f /     b 
Txy 

C,2  '  a'ai =     0 

m        b             m _ 
^xy C'2  "  a'ai =     0 

f      b f 
uxc'2  * a^i =    k 

(113) 

(114) 

(115) 

(116) 

in/    b m\ , 
ux(c'2 ■ a'ai) = k 

f      b f\ m      b m\ _ 
u    c.^ -  a.aj   - u    c.j - a.Q'J - 0 

(117) 

(118) 

TYPE 4 EQUATIONS 

where 

f , .a   b    f 
CTxy 

c-a+*lö'2'ai (119) 
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where 

j - 1,...,9 

TYPE 5 EQUATIONS 

TYPE 6 EQUATIONS 

where 

j - 1,....9 

where 

j = 1 9 

TYPE 7  EQUATIONS 

waere 

j B  1,2,3,4 

f .^a    b     f u    c-a+Jf-,—,0' 

f /    b    f \   =    0 
V c'2'ai 

f      b     f u   lc.2'ail 
k 

ff    b    f 
uy\C'l'ai 

CTxy C'2"Jrö ■<] 

f(    b     .a      f 
u Vq-JYö'Vi 

xy H-#l.<] 

(120) 

(121) 

(122) 

(123) 

(124) 

(125) 

(126) 
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where 

j =   1,2^,4 

TYPE 8 EQUATIONS 

TYPE 9 EQUATIONS 

where 

j ' 0,1. 

where 

j - 0,1, 

,11 

,11 

m       b .  b-a\    m 

xy 
I)    m 

b    ra 
C'-l'ai 

ml       b    ml 
Uy C'-2'ai| 

c     b    m 
axylJ12,'2'Q'i 

12'   2'ai 
=    0 

(127) 

(128) 

(129) 

(U0) 

(131) 

(132) 

TYPE 10 EQUATIONS 

where 

j - 0,1,2 

m     .c-a b    m n axy ^T'rai    =   0 (133) 
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m/.c-a b m (134) 

where 

j = 0,1,2 

The total number of equations is 148, but the total number of unknowns 
to be determined (df/, ai, . . •, a^ ,  a™, ag,...,^) is 19.  Therefore, we 
can use the method of Least Squares to obtain the results. When solving 
the 148 simultaneous equations (103) through (134), we assumed that k B 

- 1 . 

In theory, the Point Matching method was used to solve the problem, 
and the computer program is presented in Appendix II.  The finite element 
method was eventually used, however, since it was found that the Point- 
Matching method does not give good convergence in the solution. 
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APPENDIX  II 

COMPUTER   PROKRAM  FOR  THE   SOLUTION 

Of XHE THREE-DIHENSIOHAL PROBLEM 

$JOBf91503-003. TED NEFF. 
$TAPE,SCR»02,OLO"OO.NEW"00. 
RUNIS»«»...2*0OOOJ 
SET(O) 
LGO. 

PROGKAM   THREEO(INPUT.OUTPUT.TAPE5«INPUT,TAPE6-OUTPUTtTAPEl.TAPE2 
COMMON/1/   MSKIIOOOI,   ICS22(80.240.3I.IV(55 .4.3 I ,X1(4.3),X2(*.31 . 

1 X3I4.3)« K21(82)      .KMXI12.12) .CDA(72.3.55)      • 
2 IN.   MM,    IP,   IPL, A2lt82)    ,   X(32,2)   ,   ICO<«,3,55) 
3 , CENT(3,3,55),   02 
DIMENSION  AS22<30,2401 
EQUIVALENCE  (509201 ),AS22> 
COMMON /INPUT/   XNU(2), E(2) ,XLAM<2) . G(2> , CMXr6»6,2» * DO 

DIMENSION  C(6.6,2) , TEMP(IO) 
DIMENSION  S«a0,80,5) 
EQUIVALENCE  US22(19201) •£)  , (CMX,C) 

THIS PROGRAM. WITH ITS ASSOCIATED SUBROUTINES. SOLVES THE THREE- 
DIMENSIONAL STRESS PROBLEM BY THE METHOD OF FINITE ELEMENTS. 

MM -   HIGHEST NODAL POINT INDEX OF TRIANGLES IN GROUND PLANE 
IN - HIGHEST INDEX NUMBER OF BASE TRIANGLE 
IP - HIGHEST INDEX OF BASE PLANE NORMAL TO THE Z DIRECTION HAVING 

THE DISTANCE  IP»DZ FROM PLANE  2 ■ 0. 
MM - 32 
IN ■ 55 
IP ■  9 
READ 1000.(TEMP( I I.W.10) 

1000 FORMAT(10A8) 
PRINT 1010, (TEMP<n,I»l,10) 

1010 FORMAT(1H1.1ÜA8) 
READ 1U01, 02,E(l). E(2). XNU(l), XNU(2>. DO 

1001 F0RMAT(6(5X. E8.4)) 
DO 1 I-1,MM 

1 READ 1005, K,   X(K»1» , X(K,2) 
1005 F0RMAT{I3,E12.4,E12.4) 

DO 10 1-1,2 
XLAM(I) - XNU(I1*EIII / ni.*XNU(n)«(l.-2.«XNU(ln » 
GUI ■ E( I) / l2.«(l.+XNU(lm 

10 CONTINUE 

DERIVE C MATRIX CMX 

DO 20 1-1,6 
DO 20 J-1,6 
DO 20 K-1,2 
CMXd.J.K) 

20 CONTINUE 
DO 25 1-1,2 

'  CIl.l.I» 
C(2,2,n 
C(3,3,n 
C(4,4*I) 
C(5,5,I) 
C(6«6*I) 
C(2,l,n 
CO,1,1) 
CO,2.1) 
Cll.2,1) 
ctio.n 

XLAMII )t-2.»G(I) 
Ct 1.1.1) 
C(l.l.I) 

Cdl 
C(4.4,I) 
C(4,4,n 
XLAM(I) 
C(2,1,I) 
C(2,1,I) 
C(2,1,I) 
C<2,1,I) 

72 



t 

25 
C(?t3>I) > 
CONTINUE 
PRINT OUT 

PRINT 1090. 

C(2.1.I) 

THE INPUT QUANTITIES 

ULAM(J),J-l,21,(G(J)»J-lt2).(XNU(J>,J-1,2)» 
1 (E(J),J-lt2) 

1090 FORMAT(1H1,   SX*9HLAMeDA( 1 ) t9Xt9HLAMBDA<2)»10Xt4HG( 1 I 110Xt4HG(211 
1 9Xt5HNUm t9Xt5HNU(2lil0X.4HE(l)tl0Xt4HE(2)    /IX.P ( 3XE11 .4)///» 

PRINT   1091f   DZ.   DO 
1091 FORMATHH   . 12X 12H02 112X t2HDO/Xt2 < 3X .E11.4 )///) 

DO  30     J  ■   ItS 
11 »  «»(J-D + l 
12 -     11+3 

1092 FORMATdH ,4( 7X« 2HX ( . f 2 .3H, 1) , 7X .2HX { , 12 ,3H ,2 ) )/X8( 3XE11 .* » / ) 
30 PRINT 1092f ((I lit III•II-IltI2).((X(II,1).X(II«2)).II-I1(I2)) 

C 
C 
c 

PR'NT OUT C MATRICESf 1 PAGE 

PRINT 2001 
2000 FORMAT(2H Ctll/) 

00 5001 I»1.2 
PRINT 2000,1 
DO 5000 J-1.6 

5000 PRINT 2002.(C(JtKtI).K-1.6) 
5001 PRINT 2003 
2001 FORMAT(1H1) 
2003 FORMAT(///) 
2002 FORMATdH »6 < E13.6.4X I I 

CALL NOWAK 
C 
C 
c 
c 
c 
c 

c 
c 
c 

NOW HAVE COEFFICIENTS OF UNKNOWN DISPLACEMENT MATRIX 
AS22(80«160)  IS FIRST PARTITION ROW 
KS22(80X240,1) IS USED FOR ROWS TWO THROUGH 8 
KS22(80X240.2)  IS GENERATED IN CHL3D 

CALL CHL3D 

NOW HAVE UNKNOWN DISPLACEMENTS IN SP(82«9) - S<1.1,1) 

CALL 
STOP 
END 

SIGMAS 
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c 
c 
c 
c 

SUBROUTINE GETKMX(KJ.I) 
COMMON/1/ MSKllÜÜO)f KS22(80.240»3) i 1 V(55f4t3)»X1U,3 1 »X2 ( 4,3), 

1 X3Ut3)» K21(82) 
2 IN. MM, IP. IPL. 
3 . CENT(3.3.55).   DZ 
DIMENSION  5(80,80.5) 
DIMENSION  AS22(80,240) 
EQUIVALENCE  (S(192ül ),AS22) 
EQUIVALENCE  (ICS22 (19201) »S ) 

THIS SUBROUTINE DERIVES THE ( 1 ; x : .? ) <-^' 
IN DERIVING ROWS OF THE BIG MATRIX <7? 

,KMX(12,12).CDA(72.3.55)  • 
A21(82) , X(32,,) , ICO(4.3,55) 

ICES FOR USE 

DIMENSION DXT(72! . DX(721 
DIMENSION   JMXd ?.:'') , A^*  - • : 2 ) 
DIMENSION XI(4). UAU), ZFi- *), ASTRe»,"») 
COMMON /INPUT/   XNU(2), L,., ,XLAM(il , u(2) , CMX(6,6,2) .  J 
REAL KMX 
DATA (DXT<J) ,J=l,72)/0.,l.,lfl*0.,l..lb»0..1..0..0.,l.,0.,0.,l., 

1     9»0..1..5»0..1.,9*0.,1.,0,.0..1.,0./ 

DATA (DX (J),J=l,7t:)/b*J..1..8»0..1.,6»0.,l»,
1.0«0.,1..3»0..1». 

1     9»0..1.>10*0..1.,6»0. .1..2»0..1..3»0./ 

10 

15 
20 

IF(l.LE.lO) 
IF(I.LE.12) 
IF(I.LE.21) 
IF(I.LE.2<») 
IF(I.LE.32) 
IREG ■ 2 
60 TO 20 
IREG - 1 
CONTINUE 

GO 
GO 
GO 
GO 
GO 

TO 
TO 
TO 
TO 
TO 

15 
10 
15 
10 
15 

IREG 
IREG 

I. 
2. 

FIBER 
RESIN 

30 

DO 30 IBC' 
XKIBC) - 
ETA(IBC) • 
2ETA(IBC) 
CONTINUE 

•■   2.4 
Xl( IBC.KJ) - XK'.KJ) 
X2tIBC.KJ) - X2(1.KJ) 

» X3( IBC.KJ) - ;,3(1.ICJ) 

GET INVERSE OF AMX 

ASTR(l.l) 

ASTR(2.1) 

ASTRO.l) 

ASTR(4.1) 

ASTR(1.2) 
ASTR<2.2) 
ASTR(3.2) 
ASTRU.2) 
ASTR(1.3) 

XI 
-X 
♦ X 
-( 
•K 
-( 

( 
-( 
+ ( 
-( 
■M 
-( 
0. 

( 
-( 

( 
0. 

(2)«( 
1(3)» 
1(4)« 
ETA(3 
ETA(2 
ETA(2 
X I (V) 
XI,2) 
XI(2) 
XI (3) 
XI (2) 
XI (2) 

ETAt3) 
(ETA(2 
(ETA(2 
)«7.ETA 
)»ZETA 
)«ZETA 
•ZETAI 
•2ETA( 
♦2ETA( 
•ETAU 
•ETA(4 
•ETA(3 

•ZETA(4) - 
)*ZETA(4)- 
)»2ETA(3)- 
(4) - ETA( 
(4) - ETA( 
(3) - ETA( 
4) - XI(4) 
4) - XI(4) 
3» - XI(3) 
) - XI(4)» 
I - XI(4)« 
) - XI(3)» 

ETA(4)»ZETA(3)) 
ETA(4)»ZETA(2)) 
ETA(3)»2ETA(2)) 

4)«ZETA(3) 
4)»ZETA(2) 
3)«ZETA(2) 
«ZETAI3)) 
*2ETA(2)) 
•ZETA(2)) 
ETA(3) ) 
ETA(2) » 
ETA(2) ) 

ETA(3)»ZETA(4) 
XI(3)»ZETA(4) 
XI(3)»ETA(4) - 

- ETA(4)*ZETA(3) 
• XI(4)»ZETA(3») 
XI(4)»ETA(3) ) 
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c 
c 
c 
c 
c 

ASTR(2.3) ■ -(ETA(2)»ZETA(4) - ETAm»ZETAia)) 
ASTR(3t3) «  (Xl(2)*ZETA(4) - X I(4»«ZETAC2)) 
ASTR(4t3) ■ -(XI(2)*ETA(4)-XI(4)«ETA(2)) 
ASTR(lf4) » Ü, 
ASTR(2.4) =  (ETA(2)»ZETA(3) - ETA(3)*ZETA(2)) 
ASTR(?.4) ■ -(XI(2)*ZETA(3» - X I(3)«ZETA(2)) 
ASTR(4.4I »  (XI(2)»ETA(3) - XI(3)»ETA(2) ) 

C 
C 
C 

DELTA » XH2) ♦ 
1 + XI(3) • 
2 + XI(4) « 
DO 35 IQ « l.A 
DO 35 IR » 1.4 

35 ASTR(IO.IR) » ASTR(IO.IR) / DELTA 
DO 50 10 «1.4 
DO 50 IR =1.4 
AMXdO.IR) > ASTR(IO.IR) 

(ETA(3)»ZETA(4) - ETA<4)*ZETA<3») 
(-ETA(2)»ZETA(4) + ETA(4)*ZETA(2M 
(ETA(2)»ZETA(3) - ETA(3)#ZETA(2)» 

AMX(IQ*4,IR+4) 
AMX(IQ+8.IR*8) 
AMX(1Q+4.IR ) 
AMX{I0+8,IR ) 
AMX(I0+8.IR+4) 
AMX<IQ ,IR+4) 
AMX(IO ,IR+8) 
AMX(I0+4.IR+8) 

50 CONTINUE 

ASTR(IO.IR) 
ASTR(IO.IR) 
0. 
0. 
0. 
0. 
0. 
0. 

NOW  AMX CONTAINS INVERSE OF A 

V » ABS(DELTA) / 6. 
CALL MXMULT(DX.AMX.KMX.6.12.12) 
CALL MXMULT(CMX(l.l.IREG)tKMX.C0A(l*KJ.I).6.6.12) 

NOW HAVE CDA(I ) 
CDA IS (6 X 12). 
THIRD SUBSCRIPT 

SECOND SUBSCRIPT IS TETRAHEDRON NUMBER KJ. 
IS BASE TRIANGLE INDEX. 

60 

DO  60   10   -1*4 
DO   60   IR   =1.4 
AMXdO.IR)   =ASTR(IR.IO) 
AMXdO+4.IR + 4)   «ASTRdR.IO) 
AMXdQ+8.IR+8)   =ASTRdR.IO) 

AMX NOW  CONTAINS   TRANSPOSE  OF   INVERSE   OF   A 

CALL MXMULT(AMX.DXT.JMX.12>12.6) 
CALL MXMULT(JMX .CDA d,KJ.I).KMX.12.6.12) 
CALL MXCON(KMX.KMX,V.12.12) 

K MATRIX NOW IN KMX(J.K) . J=1.12  .  IC-1.12 

40 RETURN 
END 

y- 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 

SUBROUTINE NOWAK 
COMMON/1/   MSM1000).   KS22 ( 80.240.3 >. I V( 55 »4.3 ) tXl (Ata) .X2<4.3 ) » 

1      X3(4»3I. K21(82)       .KMX(12.12)»CDA(72.3.55I       • 
COMMON/1/   MSMIOGO).   ICS22 (80 .240. 3 ) . I V< 55 .4 ,3 ) »XI (4.3 ) .X2 < 4.3) . 

1 X3(4.3). K21(82)      .KMX(12.12).CDA(72.3.55)       • 
2 IN.   MM.   IP»   IPL» A21(82)    »   X{32»2)   ,   ICO{4,3.55) 
3 »   CENT(3»3.55)»       OZ 
DIMENSION AS22(80,240)  »KX(90)»PA2(3) 
EQUIVALENCE  (S(192J1 ) .,AS22 ) 
COMMON /INPUT/   XNU(2». E(2) »XLAM(2) » G(2) . CMX(6.6.2) » DO 
EQUIVALENCE (KS22(19201) .OS22) 
DIMENSION  5(80,80.5) 
DIMENSION 0522(12800)  .  PP(IOOO) 
EQUIVALENCE  (K522(19201).S) 
DIMENSION IM(35.3) . LM(35»3) 
DIMENSION  IKO(3»2) 
REAL KS22» (C21 » KMX 

THIS SUBROUTINE DERIVES ALL NON-ZERO COEFF 
DISPLACEMENT MATRIX. THE DISPLACEMENT MATR 
DIVIDED INTO 9 ROWS OF SUBMATRICES WHICH 
AT MOST» THREE OF THESE SUBMATRICES CONTAI 
DIVIDED INTO 9 ROWS OF SUBMATRICES WHICH 
AT MOST» THREE OF THESE SUBMATRICES CONTAI 
ONLY THESE THREE NON-ZERO SUBMATRICES ARE 
SUSROUTINE NOWAH PUTS THE TWO SUBMATRICES 
PARTITION ROW INTO AS22(80X160),  FOR ROWS 
NON-ZERO SUBMATRICES REPEAT.  THESE THREE 
KS22(80X240»1). 
THE TWO PARTITION ELEMENTS IN ROW NINE ARE 
SUBROUTINE CHL3D WHEN NEEDED ON THE NINTH 

ICIENTS FOR THE UNKNOWN 
IX IS (720X720)» AND IS 
HAVE (80X80) ELEMENTS EACH. 
N NON-ZERO ELEMENTS.  THUS. 
HAVE (80X80) ELEMENTS EACH. 
N NON-ZERO ELEMENTS.  THUS. 
DEVELOPED. 
OF INTEREST FOR THE FIRST 
TWO THROUGH EIGHT. THE 

MATRICES ARE STORED IN 

GENERATED IN 
PASS. 

THE INDEPENDENT TERMS CORRESPONDING TO ROW ONE WILL BE IN A21. 
THE INDEPENDENT TERMS FOR ROWS TWO THRU NIN? WILL BE IN K21(80.1) 

X(I.l) - X COORDINATE OF ITH NODAL POINT 
X(1.2) - Y COORDINATE OF ITH NODAL POINT 
DZ - DISTANCE BETWEEN TWO CONSECUTIVE BASE PLANES 
Ed) - MODULUS OF ELASTICITY OF MEDIUM KFIBER) 
E(2) - MODULUS OF ELASTICITY OF MEDIUM 2(RESIN) 
XNU(l) - POISSONS RATIO OF FIBER 
XNU(2) - POISSONS RATIO OF RESIN 
IC0(4.3) -  ZERO OR ONE 
I (CO (3.2) -  ZERO OR ONE 
DO - DISPLACEMENT IN X DIRECTION ATPLANE X- (SORT(3.)/2.)»B 

PYF   »   0. 
PZF   »   0. 
PXS   «   0. 
PZS « 0. 

P IS FORCE. 
F   IS  FRONT   ( 5   IS   SIDE.   X.Y.Z   ARE   DIRECTIONS 

PAZ(l) " 0. 
PAZ(2) ■ 0. 
PAZ(3)   -   0. 

PAZ(l) IS X COMPONENT OF FORCE AT PLANE Z*0(BOUNDARY LOAD) 
PAZ(2) IS Y COMPONENT OF FORCE AT PLANE Z«0(BOUNDARY LOAD) 
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PAZO)   IS  Z   COMPONENT  OF  FORCE AT  PLANE  Z«0(BOUNDARy LOAD» 
FOR  PAZ(l)   ■  PAZ(2)   ■  PAZm»  0       WE  HAVE  FREE  SURFACE CONDITIONS. 

IX " 0 
JX ■ 0 
DO 103 M ■ l.MM 
IF(M.LT.8) GO TO 100 
IF(MOD(M»7).EO.O. OR. MOD(M- 1.7) .EO .0) 
DO 10$ MNl>lt3 
IX " IX ♦ 1 
JX • JX ♦ 1 
MSIC(IX) - 3«(M-1) ■f MN1 
PP(IX) ■ PAZCMNll 
KX(JX) ■ IX 

GO  TO  101 

10S 
60  TO  103 

100 IF(M>E0.1.0R.M.E0.7)     GO TO  102 
IX  ■   IX  +   1 
MSK(IX)«   3»(M-1)   ♦   2 
PP(IX)   «  PYF 
IX  ■   IX   +   1 
MSXdX»   ■   3«(M-l)+3 
PPCX)   -  PZF 
60 TO  103 

102 IX  «   IX+1 
MSK(IX)   ■  3»M 
PPdXJ   ■  PZS 
60 TO  103 

101 IX  ■   IX  +   1 
MSIC(IX)»   3  »   (M-l)   ♦   1 
PP(IX)   »  PXS 
IX  »   IX+1 
MSKdX»   •   3»(M-1)*3 
PP(IX)   «  PZS 

103 CONTINUE 
IXMAX   -   IX 
JXMAX   -   JX 
00 104  N«l.ll 
00  109   IX   *   1*   IXMAX 
MSIC{N»IXMAX*IX>"MSK(IXJ   + N   •   3   •   MM 

109  PP(N«IXMAX+IXI   ■   PP(IX> 
DO  108   JX   >   ItJXMAX 
XXJX»ICX(JX) 

108  PP(XXJX+N»IXMAX)   •  0. 
104 CONTINUE 

DO 169 I - 1. IN 
IFF « 1 
IF(MOD(I*2).E:0.0)  IFF > -1 
IF(MO0(I.12UEO.0)6O TO 2 
IE12 » 0 
60 TO 4 

2 IE12 > 1 
4 IM(l.l) « 1 +1/2  +(I-IEI2)/12 

IKO(ltl) « 0 
IZ ■ 1/2 
IF(MOD(IZ*2).EO.O) GO TO 6 
IPn.GT.48)  GO TO 12 
IM(2.1) ■ IM(I.I) *IFF  ♦ 7 
IKO(2.1)» 0 
60 TO 7 

12 IM(3.1) ■ IM(1.1)*IFF 
1X0(3.1) - 0 

i ' 

. r 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

60 TO 7 
6 IF(I.GT.48)   60 TO 11 

IM(2.1) « iM(ltl) ♦ IFF 
IKO(2»l) ■ 0 
GO TO 7 

11 IMO.l) ■ IMdtl) ♦ IFF + 7 
IKO(3«l) ■ 0 

7 IF(I.GT.48) 60 TO 13 
IM(3.1) » IM(lfl) ■•■ 7 
IICO(3.1) • 0 
GO TO 30 

13 IM(2.1» ■ IMCl.l) + 7 
IICO(2.1) ■ 0 

30 1F(IM{1.1).GT.32)  GO TO 31 
GO TO 32 

31 IM(1«1) « 64 - IMdtl) 
IKO(l»l) « 1 

32 IF(IM(2.1).GT.32) GO TO 33 
GO TO 34 

33 IM(2.1) « 64 - IM«2»1) 
I<0(2fl) « 1 

34 1F(IM(3.1).GT.32) GO TO 35 
GO TO 36 

35 IM(3.1) ■ 64 - IM(3fl) 
IKO(3fl) ■ 1 

36 DO 20 K ■ 1.3 

DETERMINE ALPHA. BETA. GAMMA. FOR EACH NODE IN EACH BASE TRIANGLE I 

DETERMINE ALPHA» BETA. GAMMA. FOR EACH NODE IN EACH BASE TRIANGLE I 

lOl CORRESPONDS TO POINT ALPHA 
<«2 CORRESPONDS TO POINT BETA 
IC«3 COR^cSPCNDS TO POINT GAMMA 

I MM = MODdM(K.l).21) 
IFdMM.EO-O)   IMM-21 
IF(MODdMM.7).EO.O)  GO TO 8 
IE7* 0 
GO TO 10 
IE7 = 1 
IBAR » (IMM-IE7) / 7 
ID2 * MOOdMM.2) 
IH1 « MODdBAR,3) -1 
IF(IHl) 14.15.16 
1F(ID2.EQ.0) 60 TO 17 
IM(3.2) « IM(<.1) 
IK0(3.2) ■ IKO(K.l) 
GO TO 20 
IM(1,2) « IM(IC.l) 
IKO(l»2) - IKO(tC.l) 
GO TO 20 
IF(ID2.EO.O) 60 TO 18 
IM(3.2) = IMK.I) 
IKO(3.2) » IICO(K.l) 
GO TO 20 
IM(2.2) » IM(K.l) 
IKO(2.2) » IKO(K.l) 
GO TO 20 
IF dD2.EO.O) 60 TO 19 
IMd.2) » IM(K.I) 

8 
10 

14 

17 

15 

18 

16 
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19 

20 

IKO(lt2) 
GO TO 20 
IM(2t2) • 
IKO(2.2) 
CONTINUE 

< IKO(K.l) 

IM(K»1 ) 
■ IKO(IC.l) 

IF(MOD(It2).E0.1) 
LX « 2 
MX ■ 3 
MM1 » MM 
MM2 ■ 0 
XM31 « DZ 
XM32« 0. 
GO TO 26 

27 LX = 3 
MX « 2 
MM1 *   0 
MM2 ■■ MM 
XM31 = 0. 
XM32" DZ 

26 IV(Ifltl) 
IV(1.2.1) 
IV(1.3.1) 
IV(1.4.1) 
IV(1.1.2) 
IV(I.2.2) 
IV(1.3.2) 
IV(1.4.2) 
IV(1.1.3) 
IVI1.2.3) 
IV(1.3.3) 
IV(I.4«3) 

MATRIX IV RELATES 
FIRST INDEX OF IV 

GO TO 27 

* 

i M (:, i) 
IM(LX.l) 
IM(MX.l) 
IM(2.2) + MM 
IM(1.2) 
IM(LX.2) + MM1 
IM(MX.2) *  MM2 
IM(3.2) + MM 
IM(1 .1) + MM 
IM(MX.l) + MM 
IM(LX.1 ) + MM 
IM(1 .2) 

THE NODES TO 
IS THE BASE 

THE TETRAHEDRONS 
TRIANGLE INDEX I 

SECOND INDEX IS NODE POSITION WITHIN TETRAHEDRON I 
THIRD INDEX IS THE NUMBER OF THE TETRAHEDRON ABOVE BASE TRIANGLE I 

THIRD INDFX IS THE NUMBER OF THE TETRAHEDRON ABOVE BASE TRIANGLE I 

X3(l.l ) 
X3(2.1) 
X3(3.1) 
X3(4.1) 
X3(1.2) 
X3(2.2) 
X3(3r2) 

X3(l.3) 
X3(2.3) 
X3(3.3) 
X3(4.3) 

0. 
X3(l.l) 
X3(l.l) 
X3{1.1) 
X3(l.l) 
XM31 
XM32 
X3(4.1) 
X3(4,l) 
X3(4,l ) 
X3(4,l) 
X3(l.l) 

+ DZ 

XKI.J) IS THE X COORDINATE OF THE ITH NODE OK THE JTH TETRAHEDRON 
X?(I.J) IS THE Y COORDINATE OF THE ITH NODE OF THE JTH TETRAHEDRON 
X3(I.J) IS THE Z COORDINATE OF THE ITH NODE OF THE JTH TETRAHEDRON 

ABOVE THE CURRENT BASE TRIANGLE 

ICOd.l.I ) 
I CO ( 2 .1. I ) 
ICO(3.1.1 ) 
IC0(4.1.I ) 
icon.2.i) 

IKO(l.l) 
UO(LX.l ) 
IK0(MX.1) 
IKO(2.2) 
IKO(1.2) 
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50 

ICO(2.2.I)   »    U0ILX.2) 
ICO(3.2»n   =   IK0(MX.2) 
ICO(4.2iI)   =   UO(3.2) 
ICO(1»3»I)   =   I KOI 1.1) 
ICO(2.3.I)   «   IKO(MX.I) 
IC0(3»3.n   «   IKO(LX.l) 
IC0(A,3,I)   =   IlCOd,?) 
00   50   IC1   «   1.3 
DO   50   IC2   »   1.3 
CENT(IC1,IC2.I)   =   0. 
DO   98   KJ   =   1.3 
XK l.KJ)   =   X(MOD( IV( 1.1 .KJ) .MM). 1 ) ♦ ( -1)»»IC0(1.KJ,I ) 
X2(I.KJ) » X(MOO( rvn.i .KJ) .MM).2)»( -1)»»IC0(l.KJ.I ) 
X1(2.ICJ)   =   X(M0D( IV( I .2 .KJ) .MM),1)»( -1)»*IC0(2.KJ»I ) 
X2(2.<J)   =   X1M0D(IV( 1.2 .KJ) .MM),2)»( -1)»»IC0(2.KJ,1 ) 
X1(3.<J)   =   X(MOO(IV(I.3 ,KJ) .MM).!)•( -1)»»IC0(3.KJ,1 ) 
X2(3.KJ)   =   X(MOO(IV(1.3 .KJ) .MM).2)»( -1)»»IC0<3.KJ.I ) 
Xl(4.KJ)    =   X(M0D(1V( I ,i* .KJ) .MM) .1 )•( -l)»«tC0(4.KJ»I ) 
X2(4.KJ)   =   X(M0D( IV( I.'» .KJ) .MM) .2)»{ -1)»«IC0(4.KJ,1 ) 

CENT(l.J.K) IS THE ITH CENTROID COMPONENT OF THE JTH TETRAHEDRON. 
ABOVE THE KTH TRIANGLE 

CALCULATE THE CENTROIDS 

55 

56 

IC1 = KJ 
DO 55 IC3»1.'» 
CENT(l.ICl.I) » 
CENT(2.IC1.I) » 
CENT(3.!C1.I) = 
DO 56 IC4 = 1.3 
CENT( ICA.1C1.I ) 
CONTINUE 

CENTd.ICl.I) + 
CENT(2.1C1.I) + 
CENT(3.IC1.I ) ■»• 

XK IC3.IC1) 
X2(IC3.IC1) 
X3(IC3.IC1) 

« C£NT(ICA.IC1.I) / 4. 

421 

700 

800 

300 

302 

301 

306 
305 

304 

CALL GETKMX(KJ.l) 
DO 99 K * 1.2 
DO 799 NZ " 1«12 
ISA1 » 1 
Ml » M0D(N2.4) 
IF(Ml.EO.O) GO TO 700 
IE4 = 0 
GO TO 800 
Ml = 4 
IE4 » 1 
M2 = 1 + (NZ - IE4) / 4 
IF<IC0(M1,KJ.I).E0.1)  GO TO 799 
IPL = 3*(IV(I.M1.KJ)+(K-1)»MM-1)+M2 
IFdPL.LE.ll )  60 TO 300 
IPL = IPL-10»(IPL/96+1) 
CONTINUE 
IF(3«(IV(I»M1.KJ) +1K-1)«MM-1)+M2-MSK(I PL))301.302.303 
IF(IPL.GT.160)  GO TO 799 
III = IPL 
GO TO 327 
IF(IPL.LT.3)  GO TO 799 
IMR = IPL - 1 
IF(3«(IV(I.M1.KJ)+(K-1)»MM-1)+M2-MSK(IMR)) 304.305.799 
IF»IMR.GT.160) GO TO 799 
111 « IMR 
60 TO 327 
IMR = IMR - 1 
60 TO 306 
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303 IMR " IPL ♦ 1 
307 IF{3«( IV(ItMl,KJ)-f«K-l)»MM-l)*M2-MSIC(IMR) ) 799.305»310 
310 IMR ■ IMR*1 

GO  TO  307 
327   IF<M1.LT*81I     GO  TO  391 

GO  TO  392 
391 A2i(iii) « A2iiim+pp cim 

GO TO 395 
392 K21(I11- 80) » IC21(II1- 80» ♦ PPdlll 
395 00 81 KA ■ lf3 

00 82 KB « ;•<> 
IPL • 3»(IV(ItKBfKJ> + «r.-l)#MM-l)+KA 
IF(IPL.LE.ll)  GO TO 396 
IPL » IPL-10*(IPL/96*1» 

396 CONTINUE 
IF(3«(IV(I.KB.KJ)+(K-1)»MM-1»*ICA-MSK(IPL)) 3*9.350»361 

350 112 - IPL 
ISA2 • ISA1 
IF(<A.LT.3)  ISA2 « ISA1»(1-2»IC0(KB»KJ.IJ) 
OX 4X 487 
IF(KA,LT.31  ISA2 - ISA1*(1-2»IC0(KBiKJtI)) 
GO TO 376 

349 IF(IPL.EO.l)  GO TO 374 
IF( IPL.E0.2)  GO TO 82 
IMR » IPL - 1 

353 IF(3«(IV(I»KB.KJ) + (IC-ll*MM-l)-flCA-MSK(IMR)) 354.352»375 
354 IMR « IMR - 1 

GO TO 353 
352 112 - IMR 

ISA2 « ISAl 
IF(ICA.LT.3)  ISA2 ■ ISA1»( 1-2»IC0UB.(CJ. I ) ) 
GO TO 376 

351 IMR - IPL •»■ 1 
358 IF(3«(IV(I,|f.B.KJ>*(K-l)»MM-n4-|f/,-MSK(IMR))  375.352.364 
364 IMR ■ IMR + 1 

GO TO 358 
376 IF(II1,LT.81)  60 TO 517 

GO TO 519 
517 AS22(II1.II2)   *   AS22(II1.II2I   ♦  KMX(NZ.4«(KA-1)4-KBl*ISA2 

GO  TO  82 
519 tCS22(Ill- 80.112        .1)   -  KS22ini-  80.112        .1)   ♦ 

1        KMX(N2.4«(ICA-1)+KB»«ISA2 
GO  TO  82 

375  MLD  «  MOD(3»(IV(I.ICB.ICJ)-l)+KA.3«MM) 
IF(ML0.GT.19.0R.MLD.E0.2)  GO TO 82 

374 IFmi.LT.81)  GO TO 518 
GO TO 520 

518 A21(II1) - A21( II1)-ICMX(NZ«4«(KA-1)+IC8)»D0 
GO TO 82 

520 IC21(IIl-80) ■ K21(IIl-80) - »CMX (NZ .4»(KA-1 )*KB ) «DO 
82 CONTINUE 
81 CONTINUE 

799 CONTINUE 
99 CONTINUE 
98 CONTINUE 

169 CONTINUE 
RETURN 
END 

i 
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SUBROUTINE  CHL3D 

COMMON/1/   MSMIOOO) t 

C 
C 
c 
c 
r 

c 

c 
c 
c 
c 
c 
r 

K21(82) 

1 X3(4.3). 
2 IN. MM« IP« IPL« 
1 X3U.3). 
2 IN« MM. IP. IPL« 
3 « CENTO.3.55).   DZ 
DIMENSION JRC(32) 
DIMENSION IC9(80.160) 
EQUIVALENCE (S.K9) 
DIMENSION  AS22I80.240) 
EQUIVALENCE  (S(192ül )«AS22) 
DIMENSION DELX(8Ü«9) « GSAV(80«9) 
EQUIVALENCE <AS22 .2) 
DIMENSION 2(12800) 
DIMENSION  S(80*80«5) 
DIMENSION ASI80«80) 
EQUIVALENCE  ( KS22(19201) «S) 

THIS ROUTINE SOLVES  SU«G . WHERE S 
SUBMATRICES« WITH ELEMENTS OF ORDER 
S IS KNOWN 
SP IS A VECTOR OF 
C IS WRITTEN ONTO 
SP   IS A VECTOR OF 
C IS WRITTEN ONTO 
AND READ BACK IN ON 
Sdtli!»  INITIALLY 
S(l.l.?)  INITIALLY 
SU«1»4«  INITIALLY 
',n 
ON 

KS22I80.240.3).IV(55.4.3) «Xl (<»«3 ) •X2 U«3) » 
K21(82)  •KMX(12«12).CDA(72.3.55)  « 

A2H82) « X(32«2) « ICO(4«3«55) 
.KMX(12«12).CDA(72.3.55)  . 

A21(82) . X(32.2) . ICOU.3.55) 

IS 
N. 

A TRI-DIAGONAL MATRIX IN 

M IS THE NUMBER OF DIVISIONS OF S 
ON THE FORWARD PASS. 
M IS THE NUMBER OF DIVISIONS OF S 
ON THE FORWARD PASS. 

DIMENSION (NXM) WHERE 
TAPE AFTER DERIVATION 
DIMENSION (NXM) WHERE 
TAPE AFTER DERIVATION 

THE BACKSWEEP 
CONTAINS  S(l.I-l) 
CONTAINS  Sd.I  ) 
CONTAINS  Sd.I + l) 

CO^HFSPONDS TO P IN THE WRITEUP BY GATEWOOD ON THE FORWARD PASS. 
IMS PACKSWEEP. IT CORRESPONDS TO U. 
Dl        SION   SP(80. 9) 
Or  SION   C(6<»00) 
EQt.  .ENCE  (S(256ül).C) 
EOUi. -ENCE  (  AS22(12e01).SP) 
DIMENSION 0(12800) 
EQUIVALENCE (S.O) 
REAL KS22.K21 
REAL K9 
DIMENSION 0(82) 
DIMENSION ND(80) 
DIMENSION S0(8Ü.9) 
DATA (N0(I).I-1«80) / 3« 2« 3« 2. 3« 2« 3« 2. 3« 2« 3« 3« 1« 3. 

2. 3. 1. 2. 3, 
3. 1. 2. 3. 1. 
2. 3. 1. 2. 3. 
3. 1» 2. 3 / 
(JRC(I).1-1.32) / 1. 3. 5« 

1. 
2. 
1. 
2. 

/ 
I. 
2. 
1. 

3. 2. 
2. 3 
3. 
2. 

1. 
3. 

3, 
i It 

2i 

1. 

DATA 
1 26« 29« 31. 33« 36« 
2 67« 69« 71« 74» 77« 
XLIMIT » l.E-8 
REWIND 1 
REWIND 2 
N » 80 
N2 = 160 
KREM - 80 
KREM2 « 160 
M ■ 9 
DO 30 ICYCLE -1«M 
IF(ICYCLE.GT.l) GO TO 12 
WRITE(2) (Z( I)«I-1«12B00) 

1. 3. 
39. 42 
80 / 

2. 
3. 
2. 

7. 
45» 

3. 
. 3. 
• 1. 
i 3. 

9« 
48. 

2« 3« 
1« 2 
2« 3 
1« 3 

11« 
50» 

2« 3« 
> 3« 1« 
p 1« 3« 
i 1. 3. 

2. 3. 3. 
3. 1. 3. 
1. 3. 1. 
1. 2. 3. 

12. 
52 i 

14. 
55, 

17, 
58( 

JO. 
61 

1. 
1, 
2. 
1. 

23. 
64i 
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oo ii i-i.eo 
G(I)   >  A21(n 
GSAVdtlCYCLE)   •  G{ K 
00   11  J-lt80 
S(ItJ<2)   -   AS22(ItJ) 

11 S(ItJt4)   -   AS22(1,J+80) 
60   TO  17 

12 IF(ICYCLE.EO.M)   GO  TO   U 
DO  13   I-1.80 
Gd)   «   K21(I) 
GSAV( IflCYCLE)   «   G(I) 
DO   13  J-1.80 
S(ItJ.l)   •  KS22(I.J.I) 
S(I.J.2)   *   KS22(I.J+80.1) 

13 Sd.J.A)   ■   KS22( I.J+16Ü.1 ) 
GO   TO   17 

1«   INEW   »   0 
JJRC   ■   1 
DO   480   J=1.80 
G(J)   *   K21(J) 
GSAV(J.ICYCLE)   »   G(J) 
IF   (JRC(JJRC).LT.J)      JJRC   »   JJRC  +   1 
IF(J-JRC(JJRC))   A60.465.460 

460   INEW   -   INEW   +   1 
MSK(INEW+720)   -   MSIC (J+720) 
MSK(lNEW+800)   *   MSMJ+eOO> 

465   DO   480   1=1,80 
S(I.J.l)   ■   KS22(ItJtl) 
IF(J-JRC(JJRC))   470.475,470 

470  S(I,J,2)   »  KS22( I.J+80.1)   +   ICS22( I. J-t-160.U 
GO   TO  480 

475  S(I,J,2)   «  KS22(I,J+80,1) 
480   CONTINUE 

WRITE   (2)    (0(1).I"l.12800) 
DO   490   J«1.48 
MSIC(J+768)   ■   MS<(J+800) 

490   CONTINUE 
17   CONTINUE 

1   »Cl   «   N 
IC2   «   N 
IC3   *   N2 
IC4   «   N 

4   CONTINUE 
mICYCLE.EO.l)      GO   TO   10 
CALL   MXMULT(S(1.1,1)    .   S(l,1.5)    .   5(1,1,3)    ,K1,)C2,K1) 

C 
C     5(1,1,5)   CONTAINS  C   FROM  LAST   CYCLE 
C 

CALL   MXSUB(S(1.1.2)    .   5(1.1.3)    .   5(1.1.2)    .Kl.Kl) 
10   CONTINUE 

C 
C     B(I .1 )      NOW   IN   5(1.1.2) 
C 

CALL INVERT(S(1,1.2) . (Cl . IC3. XLIMIT . FLAG) 
IF (FLAG.NE.O.) GO TO 500 

C 
C  INVERSE OF BII.I) NOW IN  5(1.1,2) 
C 

IF (ICYCLE.EO.l) GO TO 20 
CALL   MXMULT(5(1,1,1)    ,SP( 1.ICYCLE-1)    .   5(1.1.3)    .Kl,   IC2   .   1) 
CALL   MXSUB   (G      .      5(1.1.3).   G.Kl,   1) 

20   CONTINUE 
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CALL MXMULT(S(1.1,2) • G tSPdt ICYCLE  ) t k: t Kl .  1) 
IF < ICYCLE.GE.M) 00 TO 35 
CALL MXMULT (5(1,1,2) « 3(1,1.4) , S(l»l«%>, Kl , Kl ,KU) 
NSO ■ N»K<t 
WRITE (1) (CIJ),J-1,NS0) 

30 CONTINUE 
35 CONTINUE 

C 
C  NOW IN BACKSWEEP» SOLVING FOR U 
C 

DO 60 I = 2,M 
JCYCLE « M-I-fl 
IF(JCYCLE.LT.M-l) GO TO 36 
Kl » KREM 
GO TO 37 

36 Kl ■ N 
37 CONTINUE 

NSO » K1*N 
IF(JCYCLE.EO.M-l)  GO TO Ul 
BACKSPACE 1 

41 CONTINUE 
BACKSPACE 1 
READ (1)  (ClJ),J-1,NS0) 

C 
C  U(M)-SPIM) , CONSIDER FIRST «M-DTH CYCLE 
C 

CALL MXMULT(S(1,1,5) ,SP(1,JCYCLE-M ),S(I , 1 » 1) ,N,K1, 1) 
CALL MXSUBISPd.JCYCLE). S(l,l,l) ,SP (1 »JCYCLE ),  N ,  1) 

6C CONTINUE 
C 
C  U(NS,1) NOW STORED IN SP(N,I) , I-1,M 
C 

REWIND 2 
DO 400 IC • 1,9 
lFnC-2) 300.320,320 

300 READ (2) (0( I),I-1 ,12800) 
CALL MXMULT(S,SP(1,1),DELX(1,1),80,160.1) 
GO TO 400 

320 IFIIC.EQ.M) GO TO 350 
310 DO 315 I»1.80 

DO 315 J«l»240 
315 KS22II.J.2) ■ KS22(I,J.l) 

CALL MXMULT(S,SP(1.IC-1).DELX(1.IC>.80.240.1) 
GO TO 400 

350 READ (2) (0(I).I«1.12800) 
CALL MXMULT(0,SP(1.8)«DELX (1.IC).80.160.1) 

400 CONTINUE 
PRINT '001 

4001 FORMAT(2.Hl.5X.3HROW.llX.4HDELX.12X.3HK21 ) 
DO 450 1-1.9 
DO 450 J-1.8U 
K - 80»(I-1)*J 
IF(MOO(K.5U).EO.O)  PRINT 4001 

450 PRINT 400Ü,K,DELX(J.').GSAV(J.I) 
4000 F0RMAT(6X.I3.2(2X.E13.6)) 

RETURN 
500 CONTINUE 

PRINT 1000 . ICYCLE 
1000 FORMAT (31H1C0ULD NOT INVtRT MATRIX IN ROW.12) 

STOP 
END 

I 
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c 
c 
c 
c 
c 

SUBROUTINE  SIOMAS 
COMMON/1/  MSMlOOOt   KS22 (a0.240f 3 ) * I V( r>5 *4t3 ) tXl (4,3) .X2(4.3) . 

1     X3U.3), K21(82l     •KMX(12tl2)«COA(72.3v39)      , 
COMMON/1/  MSK(IOOO)*   KS22(ao.240,3I.1 V(55,4,3),X1(4,3),X2(4.3)* 

K21(82) 1 X3I4,3), 
2 IN»  MM,   IP,   IPL, 
3 * CENTO,3.55).   02 
EQUIVALENCE  (KS22,STRS) 
DIMENSION  AS22(60,240) 
EQUIVALENCE  ( AS22(12801).DEL) 
EQUIVALENCE  (S(19201 ),AS22) 
COMMON /INPUT/   XNU(2), E(2) 
DIMENSION  5(80,80,5) 
EQUIVALENCE  (ICS22 (19201) tS ) 
DIMENSION   STRS'6,1500) , DX(12) 

PRINT OUT DISPLACEMENTS, 6 PAGES 

,KMX(12,12)*COA(72,3,53)  , 
A21(82) , X(32,2) , ICO(4,3,55) 

tXLAM(2) , G(2) • CMX(6*6,2) * DO 

, DEL(1000) 

1000 

14 

1001 

1002 
15 

PRINT 1000 
FORMAT (1H1,5ÜX,13HDISPLACEMENTS,//) 
JCNT ■ 0 
DO 15 J-1,102 
JCNT • JCNT ♦ 1 
IF(JCNT.LE*18)  CO TO 14 
PRINT 1000 
JCNT ■ 0 
JFIR ■ 7»(J-1)*1 
JLAST " JFIR ♦ 6 
PRINT 1001, (K,K-JFIR,JLAST) 
FORMATdH ,7(8X,4HDEL(«I3*1H))) 
PRINT   1002,    (DEL(K)*K-JFIR,JLAST) 
FORMATdH   ,7(2X,E14.7)/) 
CONTINUE 
PRINT   1001,   (K,K-7i5,720) 
PRINT   1002*   (DEL(K),K>715,720) 

c 
c 
c 
c 
c 
c 

1123 ■ 0 
DO 406 11-1,9 
DO 406 12-1, IN 
DO 406 13-1,3 
1123 - 1123*1 

11 COUNTS FLOORS 
12 COUNTS BASE TRIANGLES 
13 COUNTS TETRAHEDRONS ABOVE 
1123 COUNTS ALL OF THEM 

KZ - 0 
DO 405  KJ - 1*3 
DO 405 KK - 1*4 
KZ - KZ*1 
ISA ■ 1 

BASE 

IPL  ■   3»(IV(I2*KK*I3K(I1-1)»MM-1H-KJ 
IF(IPL.GT.864)   GO   TO   305 
GO TO 306 

305   IF(KJ.E0.3)   GO   TO  307 
1PL-IPL-96 
GO TO 306 

307   DX(KZ)-0. 
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60 TO 409 
306 IPM-IPL 

IF(IPL.LE.il)  GO TO 300 
IPL • 1PL-10»(IPL/ 96+1» 

300 CONTINUE 
IFIIPM-MSKdPLI) '.09.AIS.411 

418 IF(KJ.LT.3I ISA ■ 1-2«IC0(KK.Ii • 12 ) 
410 OXtKl)   - DEL(IPL)   • ISA 

GO TO 405 
4C9 IF(IPL.EO.l)  GO TO 416 

IF(IPL.E0.2)  GO TO 425 
1MR • IPL-1 

412 IF( IPM-MSKIIMR)) 414.419.416 
419 IF(ICJ.LT,3) ISA ■ 1-2*IC0( KK . 13 . 12 » 
415 OX(KZ) ■ DEL(IMR) « ISA 

GO TO 405 
414 IMR ■ IMR-1 

GO TO 412 
416 OX(KZ) - 00 

MLO ■ MO0(3«(IVt I2.K.K.I3)-1)*ICJ.3«MM) 
IF(MLD.GT.19.0R.MLD.E0.2)  DX(<Z) ■ 0. 
GO TO 405 

411 IMR ■ IPL-1 
417 IF( IPM-MSr.(IMR)) 416.415.421 
421 IMR ■ IMR+1 

GO TO 417 
425 OX(KZ) - 0. 
405 CONTINUE 

CALL MXMULT(C0A(1.I3.I2).0X.STRS(1.I123).6.12.1) 
C 

406 CONTINUE 
C 
C  STRS NOW CONTAINS THE SIX STRESS COMPONENTS 
C  PRINT OUT CENTROIDS. 710 PAGES 
C 

JCNT - 1 
PRINT 1027 
112 ■ 0 
DO 50 II ■ 1.9 
DZO » DZ«(I1-1I 
00 50 12 - 1. IN 
DO 500 13« 1.3 
CENT(3.I3.I2) ■ CENTO.13.12) + DZO 

500 CONTINUE 
112 -112+1 
1123 ■ 3»(112-1) ♦ 1 
I123P2 «  1123*2 
I123M1 » 1123-1 
PRINT 102U 
PRINT 1021.((tl.STRS(l.J)).J-I12 3.I123P2) 
PRINT 1022.((12.STRS(2.J)).J-I123.I123P2) 
PRINT 1023. (U.STRS(3.J+I123M1)) .J-IO) 
PRINT 1024.(1 CENT( l.J.I2I.STRS(4.I123Ml+J)).J = l,3) 
PRINT 1025.(( CENT(2.J.I2).STRSJ5.I123M1*J)).J«1.3) 
PRINT 1025.<J CENT(3.J.I2).STRS(6.I123M1*J)).J«1.3) 
PRINT 1026 
JCNT ■ JCNT*1 
!IF(JCNT.LT.7)  GO TO 50 
PRINT 1027 
JCNT - 0 

50 CONTINUE 
1020 FORMATUH .3 (20X.13HSTRE5S VECTOR.6X)) 
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1021 
1022 
1023 
1024 
1025 
1026 
1027 

FORMAT(1H 
FORMAT(1H 
FORMAT(1H 
FORMAT (1H 
FORMAT(1H 
FORMAT(1H 
FORMAT«1H1) 
RETURN 
ENO 

.3(5HLAYEP.9XfI3»3X.E13.6.6X) ) 
t3(8HTRIANGLEf6XtI3t3XtE13.6t6Xn 
t3(llHTETRAHEORONi3XtI3»3X«E13.6t6X)) 
t3(8HCENTROI0.2X»F7.<»«3X.E13.6t6X)) 
»3(lÜX»F7.<».3XtE13.6»6X) ) 
) 

/ 
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SUBROUTINE INVERT(B.KtK2.XMIN.FLAG) 

C  THIS SUBROUTINE SETS UP A UNIT MATRIX ADJACENT TO 3(K.IC) 
C  ELEMENTARY ROW OPERATIONS ARE THEN PERFORMED ON THE NEW K X 2K MATRIX 
C  TO REDUCE B(K,IC) TO A UNIT MATRIX,  THIS WILL PLACE THE INVERSE OF 
C  ELEMENTARY ROW OPERATIONS ARE THEN PERFORMED ON THE NEW < X 2K MATRIX 
C  TO REDUCE tMK.r.) TO A UNIT MATRIX.  THIS WILL PLACE THE INVERSE OF 
C  THE MATRIX B(K.M IN THE RIGHT HALF OF 3(lCt2K) 
C  ON EXIT. THE INVERSE OF B RtPLACES B 
C  B IS AN ARRAY OF 2»K»»2 LOCAT'IONS CONTAINING THE MATRIX 
C  K IS THE DIMENSION OF THE SQUARE MATRIX B 
C  IC2 IS 2«K 
C  XMIN IS THE SMALLEST ALLOWABLE MAGNITUDE OF THE PIVOT 
C  FLAG WILL BE RETURNED AS 0. IF THE INVERSION WENT OFF OK 
C  FLAG WILL BE RETURNED AS 1U. IF A PIVOT ELEMENT WAS TOO SMALL 
C  FLAG SHOULD BE TESTED AFTER EACH CALL TO THIS ROUTINE 
C 

DIMENSION B(K.K2) 
C 

FLAG = 0. 
C 
C  SET UP UNIT MATRIX 
C 

00 1  1=1»K 
DO 1  J=1.K 
BCI.K+J) = 0. 
IF« I.EQ.J)  B( I.IC+J) = 1. 

1 CONTINUE 
C 
C  FIND LEADING ELEMENT WITH GREATEST MAGNITUDE 

C 
DO 6  J=1.K 
M « J 
N « J+l 
IFJN.GT.IO      GO   TO  21 
DO   2      L=N.K 
IF   (ABS(B(M,J)).LT.ABS(B(L»J)))      M=L 

2 CONTINUE 
21 CONTINUE 

IF (ABS(B(M.J)).LT.XMIN)  GO TO 10 
C 
C  INTERCHANGE JTH AND MTH ROWS 

c 
DO 3  L»JfK2 
D » B(J.L) 
B«J.L) = B(M.L) 
B(M.L) ■ D 

3 CONTINUE 
C 
C  ZERO OUT PIVOTAL JTH COLUMN.  SKIPPING PIVOTAL JTH ELEMENT 
C 
C  DIVIDE JTH ROW BY PIVOT 
C 

00  4  M-N.K2 
B(J.M) » B(J»M) / B(J.J) 

4 CONTINUE 
00 6  M=1.K 

C 
C  M DETERMINES ROW BEING MODIFIED. ONE WHOLE ROW AT A TIME 
C 

IF ( M.EO.J )   GO TO 6 
DO 5  L«N.K2 
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c 
c 
c 

c 
c 
c 

L DETERMINES ELEMENT IN THE MTH ROW 

B(M,U ■ 8{M.L) - B(M»J) • B(JtL) 
5 CONTINUE 
6 CONTINUE 

INVERSE OF 8 IS NOW IN RIGHT HALF OF B(<tK2) 
NOW MOVE B INVERSE TO WHERE 8 WAS 

DO 7  I«1»K 
DO 7 J»IfK 
BdtJI ■ Bd.J+IC) 

7 CONTINUE 
RETURN 

10   FLAG  =   10. 
RETURN 
END 

/ 
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SUBROUTINE MXMUL1(A.BtCtMtN»K.Ml»Ml»LI) 
C 
C  THIS SUBROUTINE MULTIPLIES MATRIX A BY MATRIX 8  AND STORES THE 
C  PRODUCT IN C.   (C CANNOT BE THE SAME AS A OR B.) 
C  A IS (M X N) 
C  B IS <N X K) 
C  C IS (M X K) 
C 
C Ml IS NUMBER OF ROWS ?N ARRAY A IN CALLING PROGRAMt Ml.GE.M 
C  Nl  IS NUMBER OF ROWS IN ARRAY B IN CALLING PROGRAM. Nl.GE.N 
C  LI IS NUMBER OF ROWS IN ARRAY C IN CALLING PROGRAM, Ll.GE.M 
C 

DIMENSION  A(M1,N) • B(N1»K) • C(L1 ,K) 
C 

DO 1  I-l.M 
DO 1  L-1»K 
C(I,L) = 0. 
DO 1  J«1.N 
C(I.L) * Cd.L) + A(I.J) ♦ B(J,L) 

1 CONTINUE 
RETURN 
END 
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SUBROUTINE MXCON(A.B.X.M»N) 

THIS SUBROUTINE MULTIPLIES MATRIX A (MXN) BY CONSTANT X. RESULT IN B 
A MAY BE SAME AS B. 
THIS SUBROUTINE MULTIPLIES MATRIX A (MXN) BY CONSTANT X* RESULT IN B 
A HAY BE SAME AS B. 

DIMENSION  A(M.N) . B(M,N) 
DO 1 t-l.M 
DO 1 J-ltN 
B(I.J)» X«A(I.J) 

1 CONTINUE 
RETURN 
END 
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SUBROUTINE MXMULT ( A tBtC »M.N»IC) 
C 
C  THIS SUBROUTINE MULTIPLIES MATRIX A BY MATRIX B  AND STORES THE 
C  PRODUCT IN C.   (C CANNOT Bt THE SAME AS A OR 8.) 
C 
C A IS (M X N) 
C B IS IN X K) 
C C IS <M X K) 
C 

DIMENSION     A(M,N)    «   B(NtlO    •   C(M.K) 
C 

DO   1      l=l.M 
DO   1     L»1.K 
C(I.L)   »   0, 
DO   1     J=lfN 
C(IfL)   ■   CJI.L)   +   A(ItJ)   »  B(JtL) 

1   CONTINUE 
RETURN 
END 
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SUSROUTINE MXSUB(A,B.C.M.N> 

THIS SUBROUTINE SUBTRACTS MATRIX B FROM MATRIX A.STORES RESULT IN C 

THIS SUBROUTINE SUBTRACTS MATRIX 8 FROM MATRIX A,STORES RESULT IN C 

THIS SUBROUTINE SUBTRACTS MATRIX B FROM MATRIX AiSTORES RESULT IN C 

A, fa, AND C ARE (M X N)       (C CAN BE THE SAME AS A OR B) 

DIMENSION   A(M,N) , B(M«N) .C(M.N) 

DO 1  I»ltM 
DO 1  J=1.N 
CCI.J) « A(I.J) - BMtJ) 

1 CONTINUE 
RETURN 
END 

1056 CARDS 
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COMPUTER PROGRAM FOR POINT-MATCHING METHOD 

$RF4 SNEFF" 
ST/ 5TSP/ 59T$C/200E3> 
SFTN.L.P. 

PROGRAM PMATCH 

C THIS PROGRAM READS THE INPUTS AND SERVES AS A DRIVER FOR THE SUBROUTINES 
C SOLVING" THE TWO-DIMENSIONAL STRESS PROBLEM OF A FIBER—REINFORCED SAMPLE 
C USING THE POINT MATCHING METHOD. THE EQUATION SOLVED IS G X = Y . WHERE 
C G IS (NEO X NUNK). X IS (NuNK X I ) . AND Y ISCNUNK T T l 
C SHOULD M AND/OR MPR BE CHANGED. DIMENSIONS OF COEF SHOULD BE 8E-ESTABLISHFD. 
C AS WELL AS DIMENSIONS OF G AND GN. AND NEQ.NX.AND NUNK 

_COMMON /U_ G(148 «% 7) , GNI56.57) . E<2) . NU<?> . 
1 A IN. B"IN.~CI"N, VF 
DIMENSION ERR(148) . YI56) . GNSAV156.57) 
TYPE SEAL NU • — 
COMMON /SIZES/ NEO. «.MPR. NX. NUNK . NUNKP1 
DIMENSION COMENT(10) ™ " 
DAT A(PI=3.1415927) . <NEQ=148) . <M = 7> . (MPR = 7) . (NX=37) 
DATXTg LM~IN = 1 .E-~8) V <NUNK»56). (NUNKP1=57) 
JDUM = INIT(1.1) 

C IN IT IS CALLED HERE TO INITIALIZE BINOMIAL COEFFICIENTS TO ZERO 

KASFNO _=1_ 
READ 1000.(COMENtTiT.1=1.10) 

1000 FORMAT(10A8) 
~r'T?EX3"~l"0'0TiE"CTVV EC 2 J . NU(l). NU(2). VF. BIN ' 

1001 FORMAT(6F10.4) 
IFIBIN.EO.O. ) GO TO 2 ~ 
PRINT 2002 . KASENO 

2002 FORMAT(13H1 CASE NUMBER.12) 

^SMFNI ( I ) . I = 1 . 10 ) " 
2000 FORMAT MX1 . , AH J_ 

CIN = S 0 R T ( 3 . ) / 2 . * g I N 
_AJN=_ JaORTJ_4. » C I N * B I N * V F / P I ) 
PRINT 2~0Cil. Ef i ")" ." E ("?")• N u l l " ) . NU (2 ) . VF . A I N . B I N , CI N " 

2001 FORMAT(7X 2HEI.12X.3HEI!.1IX.4HNUI .1 OX.4HNUI I.11X.2HVF.13X.1HA. 
1 13X.1HB.13X.1HC /1X.812XE12.5) ) 

NEO - NUMBER OF EQUATIONS IN 0VE9-DEFINED SYSTEM 
M - SUMMATION LIMIT. REGION II 
"PR - SUMMATION" LLMIT. REGION I 
NX - TOTAL NUMBER OF UNKNOWNS . REGION I 
NUNK- NUMBER OF UNKNOWNS RFGION I PLUS REGION II. 
NUNKP1 - NUMBER OF UNKNOWNS PLUS 1 
ELMN - MINI MUM ALLOWABLE MAGNITUDE FOR A PIVOTAL'"EL^MCNT 

SET UP THE MATRIX G(NEQXNUNK)» THE COEFFICIENT MATRIX 
IN THE OVER-DEFINED SYSTEM GX = Y . AND ALSO SET UP Y. THE INDEPENDENT 
VFCTOR 

CALL GFTG ' " — 

Naw"~hAW"kNOivTN"MATRIX G AND INDEPENDENT VECTOR Y. GET PRODUCT W ' i 
CG—TRANSPOSE) » G. GN ISINUNK X NUNK) . 

CALL MXTMUL(G.G.GN,NE0»NUNK.NUNKP1) 

NOW HAVE LEAST-SQUARES COEFFICIENTS IN GN (NUNK X NUNKP1) 

SAVE GN FOR BACK SUPSTITUT ION 
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c 
_ 0 9 9100 J= l ,NUNK 

DO 9100 J=1.NUNKP1 
9100 GNSAV (I.J) = GNU.J) __ 

C 
CALL_FCNSLV(GN.NUM<.NIJNKP1.FLAC,,FLVIM) 
IF ( F L A G . ^ F . O . ) GO TO 100 

__.X . . 
C MOW NIJNKP1 TH COLUMN CF GN CONTAINS UNKNOWN VECTOR 
C 
C CALCULATE ERRORS IN PRIMITIVE SYSTEM AND PRINT THEM 
£_ 

PRINT 6070 
6.170 FORMA J (_ 1H1 . 2_0X . 26HERR0RS IN P R I M I T I V E S Y S T E M / / / ) 

6ri"T50" l="l.T<iff 
CALL VFCMUL ( G.GN (I .NIINKPI ) .ERR ( I ) .NEO.HUNK . I ) _ _ 

150 FPR(I) = G(I.NUNKPl) -FRR(I) 
DO 200 I = 1.21 
I F I 9 =7* (T-lT+l""' 
I LAST = 6 + IFIR 
IFU.tO.lS) PRINT 6070 
PRINT 6077.1 J.J=IFIR.ILAST) 

200 PRINT f.072 . ( ERR ( J) • J = IF IR . I LAST) 
P'lN'T 607? , 16S 
PPTNT"6"071 "i ERR'ITAS)" 

6171 FOR'"ATMH .7I3XE13.6)/ ) 
T5CTT2 TORMATTTH" V7 TI OXYZHXTVI"? ."1 H Y i ~ " 

C 
C CALCULATE AMD PRTMT TQRORS IN SOUSWEETSY5TEM 
C 

"PPINT "60 f l "0 " 
6080 F0RMAT(1H1.20X,24HERR0RS IN SQUARED SYSTEM///) 

ITO-IBTr-riTi'5'6 
CALL VECMUL(GNSAV. GN<1.NUNKP1).ERR(I).NUNK.NUNK.I) 

lJ6 TRI!in - GNlSAVH .NuNKPTf -FRETn 
DO 190 1=1.8 
IFTR « 7»( 1-11 + 1 
I LAST = IFIR+6 
p p-ŷ pf- 6 07 2 . TTi J=1PTR ,TL AST ) 

IPO PRINT 6071.(ERR I J).J = IFIR.ILAST) 
C SUBSTITUTE UNKNOWNS INTO EQUATIONS FOR SfRESSES AND DISPLACEMENTS. 
C_ 

"CAiT"B"ACKSB" 
C 

" C ALL STRESSES AND" DTSPL ACEfMffNTS ARE KNOWNi GPT-~M06UCU3~EC / E f l " 
C 

GO TO 2 
inn PRINT 7005. FLMIN 

2005 ?0RMAT("f6"HlA LARGEST PIVOTAL ELEMENT WAS S M A L L W " W MA<JNTTUD£' T HAN 
1_ _»EH_ift> 2 coNTiNor 
STOP 
END 

y 
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! 

SUBRODTINF   GfTG 
COMMON   /I/     6IU8»571    .   &N(56t^7)    ,   E(2)    .   NU{2)    t ^ A „-..-i..--„_-.„...^-. 

 TYPE   REAL   NU ,  
COMMON   /SIZES/   NEU.   Mt   MPR.   NX.   NUNK   .   NUNKPT 

C      THIS   SUBROUTINE   GENERATES   THE   COEFFICIENT   MATRIX   '(G   MATRIX) 
_C QF   THE. KNOWN  OVERDEFIMED   SYSTEM    

C 
TYPE   REAL     <AY 
DATA   (PI"3.1415927) 

IER'Ö'OUT" A'ÜCMENYEÖ   MATR I x" 
DO__l   1^1. NEO 

"DO r"j«r."NüNK"p"r 
GjI.J)-n.  

1    CONTINUE 
EQUATIONS   30   TO   3b 

X 7= C|N~ÄIN  
YY«BIN/2. 

~~C AT L"STS'>;'T T. "i. x x VY V. 1.) 
CALL   SI&<(1.2.XX.YY.-1.) 
CALL   TAUXY(2.1.XX.YY,1. ) 
CALL    TAL'XYC?.2.XX.YY,1. ) 

CALL   U('«.2._XX.YV,-1.) 
Tä'L ir"vT5Vr. xx'. v Y Vl. Y 
CALL   V(6.2.XX.YY.l. ) 

C 
C      EQUATION   36 

DO   10   J-ltU 
_CPJrC05(PI»J/3D.J 
s P J~S INTPT»J/3"ö . 1"" 
SPJ2=SIN(DI»J/15.) 
XX = CIN-AISi*CPJ 
-Y V=R.>.N/2 . -^ I N«SP J 
CALL S"IüX""( J+eTf.XXVYYVCPJ»»^) 
C^tk S1GX(J46«2»XX.YY»-CPJ*«2) 
CALL"SIGY( J-t-6,nxX.'YYVSPJ»»? ) 
CALL SIGY( J*6.2.XX.YY«-SPJ»»2)    _  
CALL TAUXY( J+6.1 .XX.YY.SPJ?) -  -- 

 CALL TAUXYU-I-6.2.XX.YY.-SPJ2 ) 
TOUATION 37  

CPJ2= C0S(PI*J/15.) 
spj^^spjz/rr  
CALL   SIGY(J-*-Zu.l .X/..YY.SPJ2)  
CALL SIGY(J+2U.2.XXVYY.-SPJ2)" 

CALL SIGXI J*20 ,1 ,_XX . Y Y,-SPJ2 ) 

CAUL "STGXTT+PO.^.XX'.YYVSP'J^) 
CALL   TAUXYU+?n,l,XX,YY.CPJ2) 

"c'ÄLT'Trü^Y( J+2ri.2VXX , YY ,-CPJ2 ) 

CEQUATION   J8 
C 

""OLT* u (i+34 .T.'xx". YYVCPJ ) 
CALL   U(J+34.2.XX.YY,-CPJ) 

"   C'ÄLT Vrj+34Vr.XX,YV,SPJ) 
 CALL   V( J-t-34.2«XX.YY .-JS P Jj^ 
c 
C      EQUATION   39 .„   

CALL   U(J+48,1,XX.YY.SPJ) 
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CALL U(J*A8.?«XX.YY.-SPJ) 
 .C*LL .V.( J*48tltXX.VVt-CPJ) 

CALL V( J*Äpr,2,XX.VV.CPJ) 
1A CONTINUE 

EOUATIONS 6^ TO 68 

XX-CIN 
YY»BIN/y.-ÄIN " 
CALL   SrGY(63»l»XX»YYtl.|  
CALL   SIGY(61,7,XX.YY,-i,) 
CAI^L    TAllXY(64tltXX.YYtl,) 
CALL "TA'ÜXYrrS.P.XX.YYVi, )"" 
CALL   ü(66«ltXXtYY.l, ) 
CALL   U(67.2tXXfYY.l.) 
CALL   V(6fl.l tXX.YY.U ) 
CALL   V(6flf?tXX,YYt-l.) 
r,(66tNUN<Pn   *   <AV 

C 
r-(67.NUNKPl)   *   KAY 

c 
■röT7ÄTfr)N5"46'"7rNß"4X   '                           

DO   20   J-1.9            ■   -                             
XX=CIN-AIN+J»AIN/10. 

.._ 

c 

CALL   TAUXY(J-»-68tliXX,YY,l.) 

c 
20   CONTINUE 
EOUATIONS   48   TO   50 

c 
XX-CIN 
YY.BlN/2. 
CALL   TAUXY(87.1,XXfYY.l./ 
CALL   U(8fl.I.XX.YY,l.)        "" " 
CALL   V(80.1tXXtYY,l.) 

c 
G(fl8iNUN<Pl)   «  KAY 

EOUATIONS   51   AND 52 
c 

DO  25   J«lf<J 

CALL   TAUXY« J*89.UXXtYYtI.) 

r 
CALL   U<J*98,1.XX.YY»1.) 

firj+^BtNUFUCPD   « KAY 

25   CONTINUE 

c 
EOUATIONS   53  AND 54 

150  30^ J«1.4 
YY»8IN/2.-AIN-J»(BIN-AlN)/5. 
CALL  TAuyV(J*157,2,XX,YY.l.»       ■■  
CALL   U(J+llli2.XX.YY,l.) 
GU+llltNUNKPl)   » KAY 

30   CONTINUE 

c EOUATIONS   55   TO  57 
T" 

YY»-BIN/2. 

-   
CALL   TAUXY(116.2.XXtYYtl.l 
CALL   U(117f2.XX,YY,l.) 
Glin.NUNK^'n   »KAY 
CALL   V(liet2.XXtYYtl.) 
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c 
C  EQUATIONS 58 AND 59 
C 

DO 40 1-1.12 
XX »( 1-1) »(CIN/12. ) 
YV--BIN/2. 
CALL" TÄÜXY(i't-il8.2.XX »YY.f. ) 

 CALL. V (J.ti.lP.»2 . XX ._YY , 1 . ) 
40 CONTINUE""" 

C  EQUATIONS 60 AND 61 
.C    

DO" Z 5 1» 1. ^ ~ 
XX ■( 1-1) »(CIN-A1NI/3. 

"YY»BlN/2." 
CALL TAUXYlI*142.2.XX.YY«1.) 
CALL V(l + U5t2.XX.YY,l. ) 

45 C0NTINUE_ 
RETURN  
END 



SUBPObTINF   BACKSB 
COMMON   IM      G(148f5>7) 

I" AIN, BIN. CIN.  VF 
TYPF REAL NU _ 
COMMON /SIZES/ NEO". M. MPR» 
DIMFNSION r)FLP(2) . AYE(?) 

JI( 11 .11 ) 
XF(2^.11 ) . YPt2U.ll) 

PMlüEG(2u) 
Jl 

ON(56.57) , E(2) . NU(2» . 

NX. NUMK . NUNKP1 
SIGN(20.2) . TAUN(?0.2) 

DIMFNSION 
DIMENSION 
'DTM'EN'S 1 öN" 
TYPE REAL 

. STRESS(20.11.5).PHI(20) 

TYPE REAL  <AY 
""ÖÄTÄ" "T( AYETT) i 
<AY «-F(l)/( 1 ,< 

"c" ' D'E vl LOP"" V A L ÜES'" ÖF" 

I=1.2I=2H I.2HII) 
NIM 1 ) ) 
SIGMAX, SIGMAY ON 10X10 GRID, STARTING AT'x'än. 

Y = B/2. . WALKING ALONG RO*/ TO RIGHT. 

DELX = CIM/Iw. 
'DETV ="-BlN/in. 
XI = -DELX 
IP>N'f'"«'0' 
DO in j=l,ll 

= IPRNT+1 
(21.22) . 
Tö'fi 
23 

IPRN'T 
GO TO 

"2 f PRINT 
GO TO 

"7?"PRTNT"TÖT0  
IPRNT = n  

21 CONTINUE 
XI = Xl+DELX 
Yn_ » "BIN/TI-'öETY 
DO 10 1=1.11 

■Y5~=~Yö_
"+ "DFÜV 

XF( I .J) = XI 

IPRNT 

YFTTTJ) 
IF((CIN- 

= YO 
XF( I .J))«»2+(BIN/2.-YF( I . J))»»2.GT.AIN»«2 ) 

1GO TO 5 
L \_\ 

'"j H I » J ) 
GO TO 6 

AYEd ) 

5   L   =   2 
JKI.J)    =   AYE(2) 

C 
6   CONTINUE 

C 
C 

Kf   fE'LLS' w"HICH   HÄLf  ÖF   UNKNOWN   VECTOR 

c 
c 

ZERO  OUT   MATRIX   G   AS   REOUIRED 

TO USE IN'MULTlPUTCÄTTON" 

DO 
DO 

121=1.5 
J21 = !• 

7 G(I21.J21) = 
NUNK 

SIGX(1.L.XF( I.J) .YF(I.J) . 1 . ) 
SIGY(2.L.XF(I .J_)_._YF( I.J) .1.) 
TAUXY('ä.u'.xTd.J).~Y~FTT.J).r.) " 
U(4,L.X_F_(J ,J) ,YF( I.J) .-l./KAY) 
vTs.CTxM IVJ) .Y>"(TVJT.-l.yMY) 

CALL 
CALL 

"C'äL'L 
CALL 
CALL 

DO  9 IM=1.5 
9 CALL VECMUL(&»_GN(1.NUNKP1). 

c    PRTNT "duT" G"RTD~V A R fA B L'E s" 
c 

STRESS!I.J.IM) .   NEC.NUNK.IM) 
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YM I .J) (STRFSS(I.J.<).K=1.5).   JI(I»J) 

CONTAINS 
CONTAINS 

SICJMA 

SIGKA 
1=1.11 
1 = 1.] 1 

J=li 
J=lt 

11 
11 

PRINT   1011.   XF(I.J) 

in CONTINUE: 
C 
C      STRESSd. J»J ) 
C      STRESSd »'j.2T 
C. . ET_.CEJ.FRA. „ 
C 

lOnp   FORMAT < lH1.13X.lHX,nx.lHY.8X.6H5lGMAX.flX.6HSIGMAY.<3X.5HTAUXY.l?X. 
1 IHU.i^X.lHV.lOX.tHREGION/) 

1001   FORMATdH   2 ( 3X .F 11 .4 ) , 5 ( 3X . E 11 .4 ) . 12X .A2   /)   
1070   FOR««AT(////) 

NOW   WVE   ALONG   EDGE   OF   FIBFR.FROM   THE   TOP.   COUNTER-CLOCKWISE. 

DELPHI    =   6. 
PHH. =   0. __ 
DO   ■>■■>.   T »"l . U 
fHIl=OHn+DrLPHI 

"PHTöTGII )' '=" PHII 
PHI(I)    =   PHI 1   /57.29578 

'XFTI .1 r=ciN-ÄiN»ccs(PHi(n ) 
YF(1,1)=HIN/2.-AIN»SIN(PHl (I ) ) 
^0   29   J=l .2 

ZERO  OUT   MATRIX   G   AS   RFOUTRED 

DO 28 121 = 1.■> 
DO 28 J1_=_1_.NUNK 

28 G( 12101 )= . " 
CALL SIGXd. J. 
CAL'L""S I GY ("2 .' J. 
CALL TAUXYn.J. 

~ "CALL IJ(4". J. 
CALL VCJ.J. 

XFd.l ) ,YF( I 
XF:( i,l),YF( I 

1 ) 
1 ) 1. ) 

XF(I.1) ,YF{ I ,1 ) ,1 .       ) 
XFd,l ) ,YF( I ,1 ) .-l./KAY) 
XF( I,1) ,YF( I .1 ) .-l./KAY' 

29 
DO   29   K=1.5 
CALL   VEC,«1UL(G.GN{1.NUNICP1 ) . STRESS(I.K.J).NtOJNUNK.K    ) 

SIGMAX   J \H   STRESSJI,1,J ) 
SIGMAY   J      IN   STRESSd.2.'j'l 
TAUXY_    J IN   STRESS! 1,3.J) 

" U'   "    '   ""J*    I Ti" ST RE S S (!, 4 , J ) 
V JIN   STKESb(154,J) 

J = l, 
J=l. 
J=l. 
J = l. 
J=l. 

DO   30   J=l,2 
SIGNII.J)    =   STRFSS( I .l.J)»C05(PHId ) )»»2 + STRESS(I.2.J) 

_ _ .  .__   -^-SjN(pHj , j j )*»? + ST?!PSS( I ,3,JI»?. 

? •  SIN(PHI(I))»   COSIPHId») 
'3 0   TAJNTITJ)":   (i,TRESS( I .2,J)-STRESS( I .1 ,J) )*SIN(PHI (IM 

1 »   COSIPHId))   +   STRESS! I .3.Jl 
~i ~»(TöS(PH: (1 > )»»2 - SINIPHI ( n )«*2) 

_33_jCONJINU£_ 

NOW HAVE VALUES ON INTrRFACF»PR I NT THEM OUT 

1005 FORVAT(1H1) 
PRINT rÖ37 

10 37 FORMAT!IH1.15X.19HVALUtS 
" " DO" 44^ J=Y.2 

DO 44 1 = 1 .14 

ON INTERFACE.////) 
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IF(I.FO.l)      PRINT   1010 
PflINT   IOJLIJ _AYE ( J ) «PHIDEG ( I ) .XF ( I . I ) . YF ( I , 1 ) i.S IGN (JjJ) t TAUN (J • JJ 

1 tSTRESSi If4.j') .     STRESSdfS.J) 
1010  FORMATOH   REGION    ,      6X»3HPH1 , nx . 1HX 114X IHYt 1IX »THSIGMA  N»   9X» 

1     "      5HTAU   N.llX.lHUtl4XilHV/)   '      ~ 
_IF(I.EQ.1*)_PRINT   1012 

"IcTF F^RMATTT///) ~    " 
44 CONTINUE 

1011 FORMATdH 4X.A2f4XtF10.2»5X.6(3X.E12.5) ) 

C  NOW FIND VALUE OF P 
S.  „_     
C  DELP(J)~INTEGRATION STEP SIZE IN REGION J 

S  _    
P » 0. 

 P^ = o. 
DELPd) =■ AIN / 20. 
CELP(7) « (BIN-AIN) / 20. 
Yl = BIN/2.+r)ELP(l) 
DO 60 J«]f2 

C  J«l. REGION I t J=2. REGION II 

DO 60 I * 1.20 

C  I STEPS ALONG LINE X=C .r  
jF(I.EO.l.AND.J.EO.2) GO TO 60 
vr 

C 

r 

VI - PELPU)  "  

"nTrö""ÜÖT_TOTR-n~"C~ÄS-REÖDT^Er5 

—m~w"jfT~?irmm  
50 G(1.J?1)   =   0. 
 «LL SIGxd.J.CIN.Vl.l.r 

CALL   VECMUL(G.GN(1.NUN(CP1).SX.NE0.NUN<»1 ) 
C 
C     INTEGRATE   SX   FOR   P.   USING  SIMPSONS  RULE. 

~r~THrTNTE'6RÄl  IS SFTTSUAr'Te-"ZERO o^-THE-FTRfST-PA-JSV  
C     TRAPEZOIDAL   INTEGRATION   IS  USED  ON   THE   SECOND  PASS 
C    WHEN J (SOCS rRoM ONF TO TWO, TH>   INYEGRATTO^ STEP" CWANSPS 50 THAT 
C_ AGAIN   SIMPSON.S   RULE   COMMENCES  ON   1=3. 
c  - _ 

IF(I-2)   56.5 2.r>3 
 ■!f?-p--=~PT-+-T3rCP'rTr»T5X+T5iTT72.     

GO  TO   55 
 53 P * P2  + ÜELV(J\*1%)(2* 57*3X1+"S50   rr.  

55  CONTINUE__ 
c         '  
C     SAVE   PAST   VALUES  OF   P.SX 
c     ""           

P2  »PI   
 FT 
56  5X2   «   SX1 

SX1=  SX 
PRINT   90<51.I .P.P1.P2 

'"9Ö9TTÖ]fMÄTr3F'r= ;Tr.THP~=V£l 3.6. 3HP1 - ,ri 3.6. 3WP-?iVEr3V6T 
 PRINT   909?.   SX.SX1.SX?   

909?  F0RMAT(4H  SX = .E13.6.4HSXl = .Tl3.6 .AHSX2».£13.6) ~~ 
60  CONTINUE 

C     PI   -   1ST   PAST   VALUE   OF   P 
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C P2 - 2ND PAST VALUt OF P 
C SX - PRESENT VALUE OF 5IGMAX 

' C SX 1~-TSr"PA'ST"VAUil"' OF' SIGMAX 
C SX? - ?HO   PAST VALUE OF Sir.MAX 
C 

.c.   .... 
C NOW   HAVE   Pt   PRINT    IT 
C 

PRINT    102J,P 
1020   F0RVAT(////4H   P=    .E15.8) 

RETURN   
END 
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> 

SUBROUTINE: V E C M U L I A . B . C . I . J . K I 
c 
C THIS SUBROUTINE "ULTIPLIFS THE KTH ROW OF MATRIX A TIKES 
C THF COLUMN VECTOR STORED IN P. AND STORES THE RESULT IN C. 
C 
C MATPIX A HAS I RO'-iS 
C WATPIX~A HAS J COLUMNS 

^ CIMENSION A(I.JI t B(J) 
"c~= "6". 
DO 1 L=1»J — 

1 C • C+A«.L»"ILI .... . 
RETURN 
r\'0 
SUBROUTINE EUNSLVf B .K »KP1. FLAG.ELMIN) 

C THIS SUBROUTTNE~DCES A GAUSSIAN ELIMINATION PROCEDURE ON THE 
C AUGMENTED MATRIX b = AY . WHFRE AX = Y. X UNKNOWN. 
f'-'THE "iNDEPEfYDFN'f VECTOR Y STORED AS THE K + D T H COLUMN OF R . " 
C P IS (KXK+1). THE SOLUTION ALGORITHM PROGRESSES ACROSS 

TH|r RIGHT, CHOOSING THE COLUMN ELEMENT WITH LARGEST 
C MODULUS AS THF PIVOT. IF THIS FLEMFNT IS LESS THAN ELN'IN. FLAG 
C f S - S T T T 0 ~ 1 0 . AND /C RETURN TO THE CALLING PROGRAM f S T x K U f E 1 5 . 
c FLAG IS RETURNED AS O. IF NORMAL COMPLETION OCCURS, FLAG SHOULD 

Au•/.AYS BF TESTED ON RETURN TO CALLING ROUTINE. 
C K°1 IS K+l» REQUIRED FOR VARIABLE DIMENSIONING 
— Q.. RETURN. 'SOLUTION VECTOR IS IN LAST COLUMN OF B » RFPLACIWTYV 

"0TM"F«'S I0M"""RT< ,KD1 f 

FLAG" = !)'. 

FIND LEADING ELEMENT WITH GREATEST MAGNITUDE 

DO 6 J = 1»K _ 
M = J " ~ 
N = J+l 
D R 2 |_=N »K 
IF (ABSIBIM.J)).LT.ABSIBIL.J))) M = L 

2 CONTINUE 
IF (ABS(B(M,J)).LT.ELMIN) GO TO 10 - -

C INTERCHANGE JTH AND MTH ROWS __ 
DO 3 L=J.KP1 
D = B<J.L> 
B( J.L) = B(M,L ) 
T(M,L)-=-D-

_3 CONTINUE 
c -
C ZERO OUT PIVOTAL JTH COLUMN. SKIPPING PIVOTAL JTH ELEMENT 
C 
C DIVIDE JTH ROW BY PIVOT --

DO U M=N.KP1 
fc7T.Mf- = B (j » M )" / B (J.J) 

4 CONTINUE 
BO~6 MM".K 

c . 
c M'DFTERMINES ROW BEING MODIFIED. ONE WHOLE ROW AT A TIME 
C 
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IF   (   V.EO.J    ) 
DO   S   L=N.<P1 

GO   TD   6 

C      L   DFTTP^INFS   ELEMFNT    I.N   THF   ^TH  ROW 
HC-I.L)    =   B('M.LV-   BIM.J)    •   B(J.L) 

 l.CPNJJ.NUC_  
f, CONTINUE 

.L    - . 
RETURN 

 m-ELAfi. '-.r.f —  _.. -      . 
RFTU^N 
END 
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FUNCTION  CflFFd .J) 
..C  
C  TH 
_C  

IS FUNCTION CALCULATLS THE BINOMIAL COEFFICIENT ( I I 
  ( J ) 

DIMENSION BINOM(15.15 ) 
TF? J^N'EVöTGTYö" l" 
XQEJLJl-JLs  

CiO   TO 
SOLL 

11 

IF(COEF.NE.O.)   RETURN 
IF(J-l)   2.-.3  
Cö"EF «  I 
GO   TO   31 
CONTINUE 

COEF   *   1, 
00   10   L   =K.I 

in 

To 

COEF   »   COFF»L 
CONTINUE 
'D'O'YC li"'l,'j"' 
COEF   «   COEF/   ,N 
CONTINUE 
BINOM(I.J)   * 

ENTRY INIT 
TT'TO-rsTJT«;- 

DO 30 1=1.15 

COEF 

30 
■3T 

B1N0MU.LI 
CONTINUE 
Tmrrme— 
RFTURN 
rm  
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c 

■'SÜ^RÖÜT!N'E"'fifVE'RTrB ."ir.'iC'2 VXMTNVPrÄijr 

"C THisTÜ¥RÖÜTlNE''sns""ijlJ"A"ÜNTt~'MATRrx' ADJÄCfNT'TÖ "STlf".^!"" 
C ELEMENTARY   ROW   OPERATIONS   ARE   THEN   PERFORMED   ON   THE   NEW   K   X   2K   MATRIX 
C TO   REDUCE   B(K.K)    TO   A   UNIT   MATRIX.      THfS   WILL   PLACE   THE   INVERSE   OF 
C THE   MATRIJX_RJ_K._K2_ INTHE   RIGHT   HALF   OF   B(K,2K) 
C QN'EXITJ~THE IN'VERSE OF B "REPLACEs~ä   
C B   IS  AN   ARRAY   OF   2****2   LOCATIONS  CONTAINING   THE   MATRIX 

"C K   FSTTHE "ÖTMENSIÖNTOF   THE   SCiÜÄRE'MAfRIx" B   
C K2   IS  2«K   ,  
C XMIN   IS   THE   SMALLEST   ALLOWABLE   MAGNITUDE   OF   THE   PIVOT 
C FLAG WILL   BE   RETURNED   AS   Ü.    IF   THE   INVERSIONWENT   OFFOK 
C *PLA6 w'llL  BE  RETTiRNEO~ÄS   llfi TF"TFIVOT'ELETMENT"WAS   TOO"SMÄLL" 
S R-A6 SHOULD BE .TESTED ArtER EACH CALL   TO  THIS  ROUTINjE  

DIMENSION   B(IC.K2) 
C 

FLAG   =   0r 

"c 
C      SET  UP  UNIT   MATRIX 

DO   1      1=1.< 
DO   1      J=1.K 
b(I.<+J)    =   0. 

1   CONTINUE 

C      FIND  LEADING   ELEMENT   WITH   GREATEST   MAGNITUDE 

DO   6      J=l.< 
M  =   J 
N   =   J + l 

 IF   (ABSIBIMtJ)).LT.ABS(D(L«J)))      M = L 
2  CONTINUE 
 ;F   <APStB(M«Jn.LT«XMlNl     GO TO   10 
"c 
C „J NlE^CttANCiLJlt-AIIQ. MT_H__RO_WS_ 

"c     
 QSL3 L=Jr<2  ^  

D  =   B(J.L) 
__ ^J^iki_.f„BJlMjLLJ  
 ""  a(M»L)   =  D 
 2.JiONnNUE  
c        """' "   ' 
C  ZERO OUT PIVOTAL JTH COLUMN.  SK1PPING PIVOTAL JTH ELEMENT 
C 
C  DIVIDE JTH ROW BY OIVOT 
C 
 DO A. „MfJliui  
" B( J .M> "^ BIJ .MT""/ '3 ( J.J ) 
t*   CONTINUE 

DO 6  M=1,K 
c „   „   _ 
"C  M DETERMTNES ROW BEING MODIFIED. ONE WHOLE ROW AT A" TIME 
C     .      . 

IF ( M.tO.J )   GO TO 6 
 DO 5  L=N.K2      
c   ' '  "'     
X__.L-?EIL,i?LlSl§_Jkl^l!tL.,-N. THF MTH ROw 
"c "  

B(M.L) = B(M,L) - B(M.J) * B(J.L) 
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"j CONTINUE 

 6..CQNT;N.UF ... . 
c 

_C INVERSE OF b IS NOw IN RIGHT HALF OF f3(K,K2) 
C  NOW MOVE B INVERSE "TO~ÄHERb B WAS 
 DO. 7... 1 = 11< 

DO 7 J=l.K 
BH.J) = B(I»J+K) 

'"Y" CONTINUE 
RETURN 

10 FLAG = 
RETURN 

""END" 

10. 

u- 

/ 
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FUNCTION   "INHSKNI 

C      THIS   FUNCTION   RFTURM5   (-n»*N   ,   O.LF.N.LF. 1" 
C  

DIMENSION   f'(2ü) 
DATA! (M( 1 I.I»lf20)«   l.-l.l.-ltl,-lil.-l,l.-l.li-Ul.-l.lt-l.l.-l, 

"' r i.-i > 
VINIUSI     =    Ml^ + l ) 

RETURN 
 gND   
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 .c„ 
SUBROUTINE  NORMAL(A,PROUtMtN1 

THFS  SlTöRÖÜTINE" MIJLTiPLliS  A»(A-TRANSnOSE). 
A   IS   (MXNIt   PROD   IS   THEREFORE   (M  X  M> 

PUTS c 
c 

PRODUCT INTO PROD 

c 
DIMENSION  A(MtN)    t   PROÜ«y..M) 

c 
DO   1   I«1.M 

"DO   I'L-irN" 
.      PROpd.L)«", 

. ..   ,. 

DO   1   J«1.N 
1   PROO.(NL)   ■  PRODdtLI   +   A( I , J)»A(L «J 1 

RETURN 
END 

  

  

  

  

     

      

                    

      

                     

- 
■  ■ 
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SUBROUTINF MXMULT(A.BtC.M.N .<) 
C 
"C" THIS^S'ÜB'RÖÜtiNE MULTIPLIES MATRIX A BY MATRIX ti     AND STORES "THE 
C  PRODUCT IN C.   (C CANNOT BE THF SAME AS A OR B.) 
C 
C_ A IS_ (M_X_N_) 
C"B"IS '(N X K)" 
C  C IS (M X K) 

DIMENSION  A(MtN) . B(N.<) t C(M,K) 

DO 1  1=1»M 
DCTI  L«l.< ' 
C(I.L) = v. 
DO 1  J=1.N 
C(I.L) = C(I.L) + A(I,J) » BtJtL) 

1 CONTINUE 
RETURN 
END 

no 



SUBROUTINE   MXTMUL(A.BtC.MiN.K ) 

DIMENSION     A(MfN),   B(M,K)   .   CIN.K) 
C     THIS  SUBROUTINE   MULTIPLIES   IA-TRANSP05E)   *  B»   PUTS   PRODUCT   IN  C 
C     A   IS   (M  X   N) '   "" 
C     A-TRANSPOSE   I_S   (NX   M) 
c  TTs" IM X'KT" 
C    _C   IS. (_N _X_K)_ 

"   DO  1 TiT«N~ 
 DO   1   L»1.K  

C(I.L)   =   0. 
DO   1   J=1,M 

1   C(I.L)   =   C(I.L)   +  A(J,I)   «  B(JtL) 
RETURN 

"~lENi5   

in 
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SUBROUTINE   SlGXdROW   .II .X.Y   .CONST) 
COMMON   /SIZES/   NEO,   M»   MPR.   NX.   NUNK   .   NUNKP_1 

" "COMMON   mil f/" "TNYYÄ , IN IT B . I N I TC ( 2 ) Vl NI f ÖlT) i'TNiTf K f ("2 F." tÜTf K2T 
1 INITK3(2)    .    INITK4   .    INITK5.    INITK6t2)    .   INITK7, 
2 1NITK8(2)    ,   INITIC9   .    INITKIO.   INfTKllTZT.   INITOMt2) 

COMMON   /I/      0(148.57)    ,   ÜN(56.57)    .   E(2)    .   NU(2)    . 
T" "AFNT Bi N 7 c ifN.    VF" " 
_T_YPF.R.EAU NU 
DATA  ("lMifA = in> , (!NITB = 16) . ( INI TC = 22.41 ) , ( INI tD=Y9.48 ) . 

J ( 1NIT<1 = 1.38) . (IN J T K 2 = 2J.. ( INITK3 =J . 39). (INITK4 = 4)     . 
2 (INIT<5 = 5) . ( iNIT<6 = 6.40) . (INlfia = 7) . t IN I TK8 = 8.41 ) . 
3 (INITK9 = 9) , (INITK10=10I  . {IN ITK 11 = 11.42) . ( IN ITOM = 37. 56 ) 

c 
—c„ 

c 
c 

THE VARIOUS INITS DEFII 

INITA+1 WILL BE THE CO 
INITB-t-1 WILL BE THE CO 
INITC(J)+1 WILL Bt THE 

"TNTfD<jT+l WllT BE THE" 

\;E THE POSITION OF THE UNKNOWNS IN THE 6 MATRIX 

.UMN OF UNKNOWN Al. REGION I 
c 
c . -. 

c 

.UMN OF UNKNOWN Bl. REGION I 
COLUMN OF Cl. REGION J. J=I.II 
"COLUMN OF Dl. REGION J. J= l.Tl 

c 
c 

(NOTE THAT A1.B1.C1 UO 
81 OVERLIES A7. AND Cl 

INITKJ WILL BE COLUMN ( 
INITKJ(L) WILL BE COLIJ. 
INITOM(J) WILL 6E COLU 

A.B. K2. K.4, K.5. K7 

GdROW.INITKKII) ) 

NOT FXI ST. SO THAT Al OVERLIES INITKll. 
OVERLIES B7) 

c 
c 
c 
c 

*"c" 
c 
c 

5F KJ . J=2.4,5,7,9,10 
■IN'OFKJ, REGION L , J = 1 .^.6.8.Tl'^ X=T.""iT 
-IN OF OMEGA ZERO I N REG ION J . J= I . I I __ 

. K9. K1U. DO NOT EXIST IN REGION II 

= GlIR0W.INITK1( II ) )+ CONST« 6.«X»Y 
G(IROW.INITK6(I I) ) 
GO TO (5,10). II 

= G(IROW.INITKMII ) )+ CONST» ?. 

5 r-(IR0W.INITIC2) 
G(IR0W.INITK5) 

= G(IR0W.INITK2) + CONST« 2.»X 
= G{IROW.INITK5) + CONST« 6.«Y 

Mil = MPR 
GO TO 15 

10 Mil = M 
15 DO 45 Ml = ], Mil 

      

M3 = Ml + 1 
DO 45 N2 = 1.M3 
Nl = N2 - 1 
[F(M1.NEJLN1) GO TO 20 
'xö"=~i." 
xc = x 
Xd = XD 
XA = XC 
GO TO 2 5 

20 XÜ = X*#(2*(M1-N1)) 
XC = > ♦ XD 

....... 

X8 = XL- 
XA = XC 

25 IF(Nl.NE.Ü) GO TO 30 
YD =1. 
YC =0. 

'   Y'B" =YC      
YA =YC 
GO TO 3 5 

30 IF(Nl.NE.l)  GO )0 33 
YA = 1. 
GO TO 34 

33"'"'YA~ = Y«»T2»(. 1-2 ) 
34 YB = Y • YA 
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YC   =   YR 
YD   =   Y»YC_ 

'3VG(TRbw»iNTfD"( ll )+Ml I      =   G(IROWtINITD( 11 )+Ml)+   CONST 
1 « MINUbl (Ml )»Z.«1N1*1 l»(2.»M+l tf_J^_#_ifli_ 
2 *   C0EF(2»Ml+r .2*Ni+i) 
IF(M1,E0.1) GO TO 44 

G( IROWflNlTCn M+Ml)  = G( IROW.INITCI 11 )+M )+ CONST 
1 "~*"MfNÜ'siTNl)»2.*Nl*(2.*Nl-»-l» ) ♦ YC » "XC 
2     » COE:F(2»Ml + l .?*M]+1) 
GO TO U0»<i4) »11 

40 G(IR0W.INITB+M1) = 0(IROWfINITB+M1) 
 1    "*V"rJlN"üsirNlT»2.*Nl*(2.»Nl + l. ) 

2 *   C0_EF(2«M1.2»N1) 
"""GITRÖwTi NI TA+MlT '=   G ( \ROW t I NI T A+M1 ) 

1 ♦   M!NUS1(N1)*2.*N1»(2.».M-1. ) 
»   C0EF(2#M1 t2#M ) 

44 CONTINjJF 
"CONTTNüE" 
RETURN 

'END" 

CONST 
Yti   «   XtT 

CONST 
YA   ♦   XA 
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SUBROUTINE 
TYPE REAL. 
COMMON"" 7si 
COMMON   /1/ 

SIGY(IROW,II    ,X.Y.CONST) 
Nl 

1 AIN 
COMMON   /IN 

G( I ROW,IN I 
G( I ROW.INI 
GO   TO   (5.1 
G(IROW.1NI 
6(IROW.INI 
Mil = MPR 

ZES/   NEQ. M. MPR. NX. NUNK . NUNKP1 
0( 148,57)    ._GN(56.57) v .E (_2J_i_N

lJ ( 2J 
PINt CIN.  "VF  ' 
IT/ INITA,INITB.INITC(2).INITD(2). IN IJ 
TN'I f K 3 ( 2 V . iWlfKii . IN I T<5." IN 11X6 ("2) . 
INIT<8(2) . INITK9 . INITKIO. INITK1112) 
T<8(:i) ) = G( IROW.INITK8(I I) ) + CONST 
TKJJM I I n_ = G( IROW.INITK1 1( 11) )_+ CONST. 
u") , Vl" 
TK9)  = G(IROW.INITK9) + CONST • 2.» Y 
"flUüT"= 'GriROw'.INITKlo") + CONST" * 67"«'X' 

K 1 { 2 ] . 
(m f K 
INIT 

• 6.» 
» 2. 

INITK;2. 
7. ~ 
OM(2.L  
X ♦ Y 

GO TO 15 
10 MM = M 
1=; DO 45 Ml = 1. MI I 

M3 = Ml + 1 
DO 45 N2 = 1 »MS 
Nl = N2 - 1 
IF(M1.NE.N1+1) GO TO 20 
XD = 1. 
XC 
XR 

X 
XD 

XA = XC 
GO TO 3 0 

20 IF(Ml.NE.Nl) GO"TO 25 
XD = U. 
XC 
XB 

0. 
0. 

XA = 0. 
GO TO 3 0 

25 XD = X»»(2»(M1-N1-1 ) ) 
XC = X» XD  
XB = XD 
XA = XC 

30 IF(Nl.Nt..') GO TO 3b 
YA = 1. 

35 
GO TO 40 
YA = Y »«( 

40 YP = Y 
_YC__=..Y_8 
YD = Y » Y 
GdROW.INI 

•M!  

• Ml 
 *C.OE 
IF(Ml.toTl 

B 
TD(II)+M1)  = G(IROW.INITU( II »+M1 ) + 
'NUSI (Nl l*t2.*(Ml-Nl)»(2.»(Ml-Nl )-!. ) 
]_2#M1 + 1 .2*N1 + 1) 
GO TO 44 

CONS! 
• YD »XÜ 

42 

GdROW.IMlTC 
 *±2»*A -   _ 

GO TO 
G(I ROW 

1 

COEF( 
(42.44 
. iNlTb' 
»  MIN 

44 
45 

2    • 
d(I ROW r 

2 * 
CONTIN 
CONTIN 
RETURN 
END 

CO£F{ 
.INITA 
»  MIN 

COFF{ 
liE 
UE 

(ID 
Ml-N 
2 »Ml 
) .1 I 
-t-Ml) 
USK 
2*M1 
♦Ml ) 
USK 
2»M1 

YC 
+f/l) = G( IROW.INITC( I I )+wl )+ CONST 
1)+l.)»2.»(M1-N1)»MINUS1{N1) • XC ♦ 
*■!    .2»N1 + 1) 

=   b(IKÜA.INITd+Ml)   +   CONST 
Nl)»2*(M1-N1)*(2.»(M1-N1)-l.)    »Yb   *   XH 
.2*N1 ) 

=   G(IRCW.INITA+M1)    +   CONST 
Nl)»2.»(M1-N1)»{?.»(Ml-M ) + l. ) 
.2»N1 ) 

XA   ♦   YA 
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I I tXfY,CONST) 
UN (56.57)    ,   E(2) NU(2) 

SUBROUTINE     TAUXYIIROW. 
COMMON   /I/     Ci(lA8.!>7) 

"l Ä IN," BIN.   CIN,      VF 
COMMON    /Slltl/   NFQ«   Mt   MPK,   NX,   NÜNK-    ,   NUN<P1  
COMMON   /IN IT/      INITA,TNltBVlNITC('2) ilNITUIZ) ,    INITKl (2) .   "INITK2, 

1 JNITK?(2)    ,    INITKA    ,    INITK5,    IN'ITKfit?)    ,    INITK7, 
2" 'YNIT<8(2)    ,   INITK9   ,    INITKIO,   I«mKll(2) , TNITÖMT2T 

G(IR0W,INITK1(II)) = 
G( IROW,lNITK3(n ) ) = 
Gj IROW,IN_ITK8( II)) = 
GO" TO "( 5 , KM V TF 

GJ I ROW,INITK1(II)) 
G( I ROW.INITK3(II) ) 
G(IROW.INITK8( II)) 

-3.*Y»*2_ »   CONST 
-CONST 
-  CONST   ♦ H.»X»*2 

GJJROW.INITK,?) 
' Gi fRÖW.~TNl'Tk9'r 
Mil    =   MPP 

=   G( IROW.INITK2 ) 
=   G(IROW.INITK9) 

CONST 
"CONST 

GO   TO   15 
10_ MI I   = _M 
T5   DO  Vs" M l" 

___M3   =  Ml   +   1 
DO "^"5   KlT =' 1 
Nl   =   N2   -   1 

1 ,   Mil 

M3 

IF(MI.NE.NI) 

xp_ =_ 0. 
"xc "= r. 
_XH__5   0. 
x A ' r. 
GO   TO   25 

GO   TO   20 

20 XD = X»*(2»(M1-N1)-1) 
XC = X ♦ XD 
XB = XD 
XA = XC 

25 IF(N1.NF.0 ) GO TO 30 
YA = 0. 
YB = 1. 
GO TO 35 

30   YA =   Y   *»   (2*PV1- 
YB 5_ Yr *r YA 

3^   YC s   YB 
YD =   Y*YC 
G(IROW,INITD(II)+M1)   =   G(IR0W,INITD(II)+M1)   -   CONST 

1 *   MlNUSi(Nn   ♦^2._»Nl + 2.)   »   2.*(M1-N1)«   YD _*XD 
"2 »~COEF(2*MT+l'.2*NT+lF   """ 

IF(Ml.EQ.l)   GO   TO   44 

G(IR0W.INITC(II)+Ml)   =   G(IROW.INITC( II )+Ml)   -   CONST 
»(2.»(M1-N1) + l. )   •   YC   #   XC 1 »  MINUSHND»   (2.*N1 + 1. ) 

 2 .*„COE F_(_2_«M I-»l   ,2»N 1 +1 ) 

 ''"G'ö"*fö"T4cr.44)»n 
40   G(IR0W.INITR+M1) «   G( IROW.IN ITB+M1)   -  CONST 

1 •  MINUSKND*   (2.»N1 + 1)»   2.*(M1-N1) 
J *   COEF(2*M1.2»N1) 

G(IRÖW.INITA+M1) 

•   YB   *   XÖ 

=   G(mOwViNrTA+Ml)   -  CONST 
1 *   MINUS1(N1)»2.*N1»(2.«(M1-N1 ) + l.)*XA_*YA 
^ "♦"CÖE"FT2»"MTi2"#Nl I"  

44 CONTINUE 
"45"'C0NfTNUF 

RETURN 

s. 

i y 

END 
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SUBROUTINt   Ü( IROW.I I tX»Y.CONST) 
COMMON   /I/      6(148»^7)    ,   (^(56.57)    ,   E(2)    .   NU(2 )    . 

1              AIN.   BIN.   CFN,      VF 
__COMMON   /filZrS/   NEO^  M,   MPR,   NX,   MUNK   .   NUMKPJ __   

COMMON   7INTT7     T"MTA,INlfH,'lNITC(2 I . INITD(2) ."  iHTfKl'TT) t  TNTTIC2" 
1 INITK3(2)    .    INITK')   ,   IN1TK.5,   INITK6(2)    .   INITK.7» 
Y' lNiTK8(2)    »    INITK9   .   IMTK10.    lNITklit2).   rNifoM(2) 

TYPE   REAL   NU 
ONENU "=   1.   -   NUU I ) 
TWONU   =   2.   -   NU( I 1 ) 
REVNU   ='0.   -   NUUI ) 

r 

ECON=( (II-l)»((l. + NU(2))*Em/(E(2)«( l.+NU( 1 ) ) )-1 . )+1 . ) »  CONST 

"GlTROW.lNlTkl ( 1 I ) i   = G( IROW. INI TKK I I ) )+ECON» ( 3 . *0NENÜ*Y*X*'»2'"" 
1 - TW0NLI»Y»»3   ) 
61i'Sow»rNTTRTITn i = i3< IRCW»INITK3(M rn+Ec'öN^r-Twö'KiüW) 
G(IK0W,INITK6( I I ) ) = G( IROW.IN ITK6( IM)+FCON«(2.■»ONENU«X) 

' G(IP0i>.r,rNiT<8( I I ) ) = r, ( IROW. INT T<e( I I ) )4-EC0N«( 3.»REVN0»Y*X'**2 " 
1 - ONENU *   Y»«3) 

' "GI lR0W,lNlTkll( I I ) )= G( IROW »INITKUI II ) )+ECON« ( 2.*REVNÜ*XT  
G( IROW»INITOM( 11 »> = GIIROW »INI TOM ( I I M-t-ECON» ( ONENU»Y ) 

—Gn-rrr Tsvrorm^  "  "   
b   G( IR0W.IMTK21    = G( 1 RO^ . INI TK2 )+r_CON» (ONENU*X*»2-TW0NU»Y»»2 ) 

' tn rROWVIN IT-C4)   = "GnROW, IN I TKA ) +ECON»REVNU " '" 
G( IR0W.IMTK5)    = G( IROW<IMTK5)+ECON*(6.*ONENU»X*Y) 

"■ -G(lR0WVTNTTX9"r = G( IRDW . INI T<g )+ECON» ( ?. »REVNn»X»Y)  
G( IRn''MNITKl">)= G( IRO.'.'.IMIT<10)+ECON«(-3,»0NFNU*   Y»»? 

r ^■1V»RFVNÖ»X 
MH    = MPR 

-m-iff 1?   •  "  
in Mil   = M 
n "00'a*,  MT = i, -"MIT 

M3    = -ii + i 
Do "45 Tl?   = T. -ftj 

Nl    = N2   -   1 
IF(M1 ',WViü)"Gö"T6"ZTf 
XD2   = 0. 

"XC? "= 'T.  
XB2   = (. • 
XÄ'2   * 1. 
GO   TO 25 

?0 XD2   = "X   **[?*(" 1-N1)-l) 
XC2   = x » xn2 

'■  "'xsp-v XD2 '    ' 
XA?   = XC2 

 ?-5 
"XDT" = X^TfVTJTFfN r-fni-t-ir 

XC1   = X   ♦   XDl 
XOl   = "XDI     ■" ' 
XA1    = XC1 
IFTNl • tuT.."!)    GO TO   3" 
YD]    = 1. 

~ YCl   = n. 
Y31   = n. 
YAl   = 0. 
YAZ    = i. 
CO   TO 40 

3P IF ( N1 NE.l)    uG 10   3b 
VD1    = Y#»? 
vn  = Y 
YIU    - V 

YAl    = I. 
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...... 
YA2   =   Y#»2 

...... GO   TO   40 
"TS" YAY  ='Y#*f2*Nl-2;' 

YB1   =   Y»   YA1 
YC1    -•   YH1 

- - YDI    =   Y*   Yn 
""YA^"'»'YDT'"' 

An   YB2   =   Y»YA2 
YC2   =   Yb2 
YD2   =   Y*YC2 
0( IROW.IMTDi II )+Ml )      =   &{ IROW.lNlTD(in + «l»+   ECON 

i #   MINUS] (N_l) _#   (0NENU»(2.»N1 + 1.)*2.»(N1 + 1. )/«2,*(Ml-Nl )+l. ) 
"i *""YD1 "• "XDl  +2'.»Rf:VNU  »(Mi-Mi)  » xo?  • VbT" 1  
3 #   CrEF(2*Ml+l    t2»Nl+l) 

IF(M!.E0.1)   GO   TO  «4 

G( I 

GO 

ROW. 

+ 

TO   ( 

INITC 
MINUS' 
REVNU 
COEFl 
42.44 

• 

47   G( I 
1 
2 

3 
GiT 

1 
2 
3 

~44~C0N 
4^_CON 

"RET 
END 

ROWi INITB 
MINUS 

(ID 
i(Nl 
•   ( 

2*M1 

' •JJ 
+ M1 ) 
'UHl 

+M1 )      =   G( IROW.INITCUI )+Ml )-f   ECON 
)   *   (ÜNENU*(2.»N1 + 1 .)•  Nl/(i«ll-Nl+l.y 
2.»(M1-N1) + ] . )      •   YC2   *XC2   ) 
+ 1   ".2*N1 + 1 ) 

»'VcT"» xTi" 

+ 
» 

ROW 

TINU 
TINU 
URN 

2.*HE 
COEF{ 
'IN ITA 
MINUS 
YA1*X 
CO^FI 
E 
£ 

VfJU» 
2'''Ml 
♦ Ml) 
KNl 
ÄY + 
2»M1 

=   G(IROW.INITB+M1 )   +   ECON 
)*(ÜNENU»(2.»iMl+l I»2.*N1/(2.*(M1-N1 H-l.)    ♦   YH1«XB1 
(Ml-rjll   «Y82   »   XH2      ) 
.2»N1) 

=   0( IRO.V.INITA-t-Ml )   +   ECON 
)   ♦   (OND'UJ*        N:»(2.»N1-1)/ (Ml-Nl   -t-I.)  
"RtV"NU*(2.*(Ml-Nl )*l. )   »   YA2   ♦   XÄ2"T 

.2*N] ) 
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SUBPOUTIM^   V( IROWfTl .X»v,rON.ST ) 
CO^vDV   /I/      G(H.H,VM    ,   GNCift.0!?) 

1 AIM,    SIN.    C IK.      VF 
_COMMON    /5IZFS/   UfC,   AN   N'PR. 

'  C J,:-VrÖN    / I N I T /       IiJiTA.IhiTS.I 

f- (? 1    ,   MM?)    , 

TYPF REAL 
RFVMl) = ■', 

TWONU    =    ? 
ONF:Nü = i 

I N I T K 3 ( ^ ) 
IN I T K. 8 {2 ) 
NU 

, - NU (ID 
, - ,\U( I I > 
,    -   NJ( I I I 

INI Ji',i* 
I'«IITK9 

NX,   "UJNK    ,   NUNKP1 
NITC(2 ) ' INI TI)(? ) , 

.    INITK^,    iNITK6( 

.    IM ; Kin,    INITKI 

INITKKZ).    IMTK 
?)    ,   IMITK7, 
1(2).   INIT!).-1(2 ) 

fc.CON=( { I !-l)*( ( 1 . + NU(2) )»F( ] )/{r (2!»( l.+NlJ( 1 ) ) )-l . )+l. )*   CONST 

G( IROWtINITK3(II)) 
G( IROW.INITKl(II)) 

G( IROW,INIT<6( II)) 
GTlRf;1/, IN I f K 8 ( II)) 

G( I ROW'» 
G(!ROW , 
ONFMIJ» 
GdRO'V. 
G(I ROW, 

-   TWONU   * 
GFlROW,INlTKli ( I I ) )   =   G(!ROW 
G(I ROW«IN I TOM(It n   =     G(IROW 
GO   TO" ("S ,10),   TI 
G(jROW,INITK2)-    G! I ROW,INI T< 
G( fROwViNfltV.'i') 
G(I?OW,IMITK7)a 

'  "GrrR"0wVlNITK9) = 
G( IROW.INITKlO)    = 

—mi s MPiü  
GO   TO   15 

o'ixii "= "w '  
5 DO 45 Ml = 1. Mil 

lw|F"»"Ml"+''"I 
DO 45  N2 = 1. w3 

n{ iRnw,lMlTK, 
G( IROWtlNTTK 
r,( IROW.INITK 
= G(I ROW.INI 

INIT<3( I I ) )+£CON«R 
INTTK1III) )+FCON«( 
X»*'l ) 
INIlKft ( I I ) )+rC0MR 
INIT<8( I I ) )+FCON«( 

X»»3 ) 
.INITK11( I I ))+   ECO 
,IN I TOM( I I ) )   +   ECO 

2) + F.CON* 2.»RFV;j 
M + FCON»^*(-ONFN 
7)   +   FrON»REVMU 
<?) + rroN«(ONE:Nij*Y 
TKID   +FCON»   ONENU 

EVNU*X 
?»fiFVf>iU»X»y»»2 

FVNIHt2.*Y 
0NFNU»y»Y»»2   •?. 

N*2.*0NENU*Y 
N«(-ONFNU«X) 

U   »   X   •   Y 
lJ«"X"»»2'+PEVHU»'"Y**?i 

*»?-TtfO>rOV'X'»»'2T 
•6.*X»Y 

Nl = wr- i 
  IF(M1 

XAl = 
.NE.Nl) GO 
0. 

TO 20 

XBl = 0. 
XCl = 0. 
XD1 = 0. 
XA2 = X 
XB2 = 1. 

""xcTV X 
XD2 = 1. 
'WTb" "To     ' 

20 IF(M1 .NE.Nl+l) 00 TO 25 
■xB"r = 1. 
XDl = 1. 
GO TO 28 

25 XBl = 
XD1"=" 

X»»(2»(M1- 

"XBl" 
Nl-D) 

28 XCl = X ♦ XBl 
XAl = XCl 
XB2 = X» XAl 
XA2 = X» XB2 
XC2 = XA2 
XD7 =■ X«^ 

30 IF(Y.NF.O) GO TO 35 
YA2 = 0. 
YB2 = 1. 
YC2   =   1. 
GO   TO   40 
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3«. YA2 = Y*«(?»N1 
Yg? s Y*YA? 
YC2 = YB2 

hO YD? 
YA1 

~ Y»VB? 
YH? 

YB1 = Y*YAi 
YC1 = YB1 

•1) 

_ YD1 = Y»YC1 
G(iR6^.INITD(JI ) «Ml )  = (,(IROW.INITOf I I )+Ml)+ CCON 

J » MINÜS1 (NU *(OMrMJ»2.*(.'!l-Nl ) » ( 2.*(.''il-Ml )-l. ) / ( 2 . *Nl-t-3 . 
2 •   XD1   *   YD1   +   REVNU»2.   «(Nl+1.)    »   Y02  *   XD2) 
J  _*   COEF<.?*Kl + l   .2«Ml + n 

IFfMl.FO.l )   GO   TO  4A 
G(JROW.JNITC( 11 )+Ml )      =   G( IROW.INITC( I I »+M1)+   ECON 

'l ~  »   MiNÜSKNir  *(ONFNU»(2.*(M-M )+l. )*       "(Mi-Nl ]7( Nl+"1VP" 
J  *   YC1   »   XC1   +   RFVNU*(2.*N1 + ]L. )   ♦   YC2   «XC2    )        ________ 

t2»Nl+i) 

. ) _/ ( N1 +1. ) 

3 ♦   COEF(2*Ml+l 
GO   TO   (42i^^ ) .11 

T?" G( IRÖW.TN'ITB + MI )    =   f,( IROW. INITB + M1 )    +   FCON 
1 *  MINUS1 (N1)♦ (ONENU»(Ml-N'l) »(2.• (K]-Nl)-1 ■ 

_     ^               _ _.^. .#   ^   +   RFVMU   *   (2.«N1 + 1.)   »   YH2   *  / 

3 «   COEF (2 »Mlt2 *n\\  
G( IROW.INIT>.VMi )    ="G(iROW". i.VjTA + Ml)    +   ECON ' 

1_ »  MINUSl(Nn*(üKtNU»(2.*(M]-M )+l. )   »2. • (M1-N1J / ( 2 .*N_1 + 1. ) 
2 ♦   VAl^^xXl   +  REVNU*2.»M1   «   YA2   *   XA2  ')  ' 

_j *   C0EF(2»M1.2*N1) 
uu  CONTINITF  
1*5   COMTINDF 

RETURN 
END 

1089 CARDS 
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Unclassified 
J3jcuril^Cl«»»inc»tigi^ 

DOCUMENT CONTROL DATA -R&D 
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